6 research outputs found

    COVID-19 infection after SARS-CoV-2 mRNA vaccination in Multiple Sclerosis, AQP4-antibody NMOSD and MOGAD patients during the Omicron subvariant BA.1/2 wave in Singapore

    No full text
    Background: The SARS-CoV-2 Omicron variant appears to cause milder infections, however, its capacity for immune evasion and high transmissibility despite vaccination remains a concern, particularly in immunosuppressed patients. Herein, we investigate the incidence and risk factors for COVID-19 infection in vaccinated adult patients with Multiple Sclerosis (MS), Aquaporin-4-antibody Neuromyelitis Optica Spectrum Disorder (AQP4-Ab NMOSD), and Myelin Oligodendrocyte Glycoprotein-antibody associated disease (MOGAD) during the Omicron subvariant BA.1/2 wave in Singapore. Methods: This was a prospective observational study conducted at the National Neuroscience Institute, Singapore. Only patients who had at least two doses of mRNA vaccines were included. Data on demographics, disease characteristics, COVID19 infections and vaccinations, and immunotherapies were collected. SARS-CoV-2 neutralising antibodies were measured at various time points after vaccination. Results: Two hundred and one patients were included; 47 had COVID-19 infection during the study period. Multivariable logistic regression revealed that receipt of a third SARS-CoV-2 mRNA vaccination (V3) was protective against COVID-19 infection. No particular immunotherapy group increased the risk of infection, however, Cox proportional-hazards regression showed that patients on anti-CD20s and sphingosine-1-phosphate modulators (S1PRMs) had a shorter time to infection after V3, compared to those on other immunotherapies or not on immunotherapy. Conclusions: The Omicron subvariant BA.1/2 is highly infectious in patients with central nervous system inflammatory diseases; three doses of mRNA vaccination improved protection. However, treatment with anti-CD20s and S1PRMs predisposed patients to earlier infection. Future studies are required to determine the protective efficacy of newer bivalent vaccines that target the Omicron (sub)variant, especially in immunocompromised patients.Ministry of Health (MOH)National Medical Research Council (NMRC)This study was supported by the National Neuroscience Institute (NNI) Neuroimmunology Academic Fund. Tianrong Yeo is funded by the Singapore Ministry of Health’s National Medical Research Council Transition Award (MOH-TA20nov-002). Yinxia Chao is funded by the National Medical Research Council (NMRC/ CSAINV20nov-0015 and OFLCG18May-0026)

    Human MAIT cell cytolytic effector proteins synergize to overcome carbapenem resistance in Escherichia coli

    No full text
    Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli

    The CD4−CD8− MAIT Cell Subpopulation is a Functionally Distinct Subset Developmentally related to the Main CD8+ MAIT Cell Pool

    Get PDF
    Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship
    corecore