8 research outputs found

    Boronic-diol complexation as click reaction for bioconjugation purposes

    Get PDF
    The research presented in this thesis focuses on the study of the reaction between boronic acids and diols and its evaluation as a possible "click" reaction, possibly applicable in bioconjugation and drug delivery. A key feature of this reaction is its reversibility at acidic pH, which could allow the release of a diol-containing drug from a bioconjugate in the acidic environment of late endosome/lysosome, possibly after undergoing receptor mediated endocytosis. Over the last two decades various studies have focused on the study of the conjugation of boronic acids to diols using Alizarin Red S as a fluorescence reporter. In this research we have presented an alternative method based on the batochromic shifts of Alizarin Red S absorbance; this method is particularly advantageous in complex systems with an elevated scattering, such as colloidal dispersions or for binding to complexed active compounds. We have therefore demonstrated that this method allows the determination of equilibrium constants between diols (e.g. catecholamines) and boronic acids. We have also demonstrated that the method allows to follow the kinetics of enzymatic reactions involving catechols; in particular, we have focused on cytochrome P450-mediated reactions such as the conversion of estradiol to 2-hydroxyestradiol using CYP1A2, or the demethylation of 3-methoxytyramine to dopamine using CYP2D6. Once we have established a reliable method for following this reaction on low molecular weight compounds, we have applied it to polymeric bioconjugates. Specifically, we have selected hyaluronic acid (HA) as a biocompatible and biodegradable polymeric backbone and produced derivatives containing boronic acids, catechols and dimethylated catechols (as negative controls). The resulting polymers where characterised via UV-Vis, 1H NMR and SLS, also qualitatively evaluating their cytotoxicity and enzymatic degradability. The conjugates with boronic acids showed the lowest cytotoxicity, and the highest degradability. The complexation of HA-boronic derivatives was then studied; using the same library of diols previously used with low molecular weight compounds, evaluating the effect of the presence of the polysaccharidic macromolecular chain.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Revisiting Boronate/Diol Complexation as a Double Stimulus-Responsive Bioconjugation

    No full text
    This study presents a quantitative assessment of the complexation between boronic acids and diols as a reversible and double-stimulus (oxidation and acidification)-responsive bioconjugation reaction. First, by using a competition assay, we have evaluated the equilibrium constants (water, pH 7.4) of 34 boronate/diol pairs, using diols of both aliphatic and aromatic (catechols) nature; in general, catechols were characterized by constants 3 orders of magnitude higher than those of aliphatic diols. Second, we have demonstrated that successful complexation with diols generated in situ via enzymatic reactions, and the boronate complexation was also employed to calculate the Michaelis-Menten parameters for two catechol-producing reactions: the demethylation of 3-methoxytyramine and the 2-hydroxylation of estradiol, respectively, mediated by P4502D6 and P4501A2. Third, we have prepared phenylboronic acid-functionalized hyaluronic acid (HA) and demonstrated the pH and H2O2-responsive character of the adducts that it formed with Alizarin Red S (ARS) used as a model catechol. The versatility and selectivity of the complexation and the mild character of the chemical species involved therefore make the boronate/catechol reaction an interesting candidate for bioconjugation purposes
    corecore