7 research outputs found

    Direct Conversion of Carbohydrates into Ethyl Levulinate with Potassium Phosphotungstate as an Efficient Catalyst

    No full text
    A series of metal-modified phosphotungstates were prepared and performed for direct synthesis of ethyl levulinate from fructose in ethanol. Considering the cost of catalysts, catalytic activity of catalysts, and easy separation of catalysts together, K-HPW-1 was chosen as the most suitable catalyst for synthesis of ethyl levulinate from fructose. A high ethyl levulinate yield of 64.6 mol% was obtained at 150 °C within 2 h in ethanol. The introduction of low polar toluene as a co-solvent improved the yield of ethyl levulinate to 68.7 mol%. The recovered catalyst remained high activity with the yield of ethyl levulinate converted from fructose above 50 mol% after being used five times. Moreover, the generality of the catalyst was further demonstrated by glucose, sucrose, inulin, and cellulose with ethyl levulinate yielding 14.5, 35.4, 52.3, and 14.8 mol%, respectively

    Direct Production of Ethyl Levulinate from Carbohydrates Catalyzed by H-ZSM-5 Supported Phosphotungstic Acid

    No full text
    A series of supported phosphotungstic acid (H3PW12O40, HPW) catalysts, including HPW/β, HPW/Sn-β, HPW/H-Y, HPW/H-ZSM-5, HPW/USY, HPW/ReUSY, and HPW/SBA-15, were prepared using an impregnation method for alcoholysis of fructose to ethyl levulinate in ethanol. Among these catalysts, HPW/H-ZSM-5 showed the highest catalytic activity, and the yield of ethyl levulinate from fructose increased with increasing phosphotungstic acid loading. The yield of ethyl levulinate reached 43.1% at 160 °C for 2 h over 20 wt.% HPW/H-ZSM-5, and the solid catalyst could be reused at least three times. EL yields of 19.1%, 27.3%, 37.4%, and 8.7% could be obtained from glucose, sucrose, inulin, and cellulose, respectively. Furthermore, the catalysts were characterized by BET surface area, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. HPW/H-ZSM-5 showed good catalytic activity for the direct production of ethyl levulinate from fructose

    Ethanolysis of Glucose into Biofuel 5-Ethoxymethyl-Furfural Catalyzed by NH4H2PO4 Modified USY Zeolite

    Get PDF
    5-Ethoxymethylfurfural (EMF) can be considered as a potential biofuel because of its excellent combustion properties, such as high energy density and low carbon smoke emissions. In this study, Ultra-stable Y (USY) zeolite was modified with NH4H2PO4 and then used as an efficient solid catalyst for the catalytic synthesis of EMF via ethanolysis of glucose First, the NH4H2PO4-modified USY was characterized by FT-IR, XRD, BET, and NH3-TPD. The effect of reaction temperature, reaction time, substrate concentration, and catalyst loading on the yield of EMF was investigated. The P0.2-USY optimal EMF yield was 39.6 mol%, which increased by 20.7% compared to USY, and still had better activity after being reused for 5 cycles. Moreover, the pseudo-homogeneous first-order kinetics model was developed to elucidate the kinetics of EMF formation from glucose, and the kinetics results showed that the activation energy of EMF formation (64.2 kJâ‹…mol-1) was lower than that of humins formation (73.2 kJâ‹…mol-1). Finally, the ethanolysis pathway was proposed based on the product distribution

    Pretreatment methods of lignocellulosic biomass for anaerobic digestion

    No full text
    Abstract Agricultural residues, such as lignocellulosic materials (LM), are the most attractive renewable bioenergy sources and are abundantly found in nature. Anaerobic digestion has been extensively studied for the effective utilization of LM for biogas production. Experimental investigation of physiochemical changes that occur during pretreatment is needed for developing mechanistic and effective models that can be employed for the rational design of pretreatment processes. Various-cutting edge pretreatment technologies (physical, chemical and biological) are being tested on the pilot scale. These different pretreatment methods are widely described in this paper, among them, microaerobic pretreatment (MP) has gained attention as a potential pretreatment method for the degradation of LM, which just requires a limited amount of oxygen (or air) supplied directly during the pretreatment step. MP involves microbial communities under mild conditions (temperature and pressure), uses fewer enzymes and less energy for methane production, and is probably the most promising and environmentally friendly technique in the long run. Moreover, it is technically and economically feasible to use microorganisms instead of expensive chemicals, biological enzymes or mechanical equipment. The information provided in this paper, will endow readers with the background knowledge necessary for finding a promising solution to methane production
    corecore