19 research outputs found

    Combination Effect of Outdoor Activity and Screen Exposure on Risk of Preschool Myopia : Findings From Longhua Child Cohort Study

    No full text
    Evidence regarding screen use and outdoor activity during very early childhood (i. e., from aged 1 to 3 years) and their potential combined links to the later preschool myopia is limited. This information is needed to release effective public health messages and propose intervention strategies against preschool myopia. We collected information regarding very early childhood screen use, outdoor activity and the kindergartens vision screenings of 26,611 preschoolers from Longhua Child Cohort Study by questionnaires. Logistic regression models were used to examine the associations between reported outdoor activity, screen use from 1 to 3 years of age, and preschool myopia. Throughout very early childhood, from 1 to 3 years, the proportion of children exposed to screens increased (from 35.8 to 68.4%, p < 0.001), whereas the proportion of children who went outdoors ≥7 times/week (67.4–62.1%, p < 0.001) and who went outdoors for ≥60 min/time (53.3–38.0%, p < 0.001) declined. Exposure to fixed screen devices [adjusted odds ratio (AOR) = 2.66, 95% confidence interval (CI) = 2.09–3.44], mobile screen devices (AOR = 2.76, 95% CI = 2.15–3.58), and limited outdoor activity (AOR = 1.87, 95% CI = 1.42–2.51) during early childhood were associated with preschool myopia. Among children whose parents were myopic, the interactions between outdoor activity and fixed or mobile screen use on later preschool myopia were significant; the ORs and 95% CI were 3.34 (1.19–9.98) and 3.04 (1.06–9.21), respectively. Our findings suggest the possibility that the impact of screen exposure during early childhood on preschool myopia could be diminished by outdoor activity for children whose parents have myopia.</p

    Cardiovascular disease contributes to Alzheimer's disease: evidence from large-scale genome-wide association studies

    No full text
    Alzheimer's disease (AD) is the most common and complex neurodegenerative disease in the elderly individuals. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. These GWAS have yielded important new insights into the genetic mechanisms of AD. However, these newly identified AD susceptibility loci exert only very small risk effects and cannot fully explain the underlying AD genetic risk. We hypothesize that combining the findings from different AD GWAS may have greater power than genetic analysis alone. To identify new AD risk factors, we integrated findings from 3 previous large-scale AD GWAS (n = 14,138) using a gene-based meta-analysis and subsequently conducted a pathway analysis using the kyoto encyclopedia of genes and genomes and gene ontology databases. Interestingly, we not only confirmed previous findings, but also highlighted, for the first time, the involvement of cardiovascular disease-related pathways in AD. Our results provided the clues as to the link between these diseases using pathway analysis methods. We believe that these findings will be very useful for future genetic studies of AD
    corecore