54 research outputs found

    High-efficiency robust perovskite solar cells on ultrathin flexible substrates.

    Get PDF
    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg(-1), given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells

    Multi‐objective evolutionary optimization for hardware‐aware neural network pruning

    No full text
    Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks. In recent years, as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics, and as new types of hardware become increasingly available, hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention. Both network accuracy and hardware efficiency (latency, memory consumption, etc.) are critical objectives to the success of network pruning, but the conflict between the multiple objectives makes it impossible to find a single optimal solution. Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective. In this paper, we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate the problem as a multi-objective optimization problem, and propose a novel memetic MOEA, namely HAMP, that combines an efficient portfolio-based selection and a surrogate-assisted local search, to solve it. Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method
    corecore