12 research outputs found

    Vitamin A supplementation boosts control of antibiotic-resistant Salmonella infection in malnourished mice.

    No full text
    Disseminated disease from non-typhoidal Salmonella enterica strains results in >20% mortality globally. Barriers to effective treatment include emerging multidrug resistance, antibiotic treatment failure, and risk factors such as malnutrition and related micronutrient deficiencies. Individuals in sub-Saharan Africa are disproportionately affected by non-typhoidal S. enterica bloodstream infections. To inform a clinical trial in people, we investigated vitamin A as a treatment in the context of antibiotic treatment failure in a mouse model of vitamin A deficiency. Vitamin A-deficient (VAD) mice exhibited higher systemic bacterial levels with a multidrug-resistant clinical isolate in comparison to mice on a control diet. Sex-specific differences in vitamin A deficiency and disseminated infection with S. enterica serotype Typhimurium (S. Typhimurium) were observed. VAD male mice had decreased weight gain compared to control male mice. Further, infected VAD male mice had significant weight loss and decreased survival during the course of infection. These differences were not apparent in female mice. In a model of disseminated S. Typhimurium infection and antibiotic treatment failure, we assessed the potential of two consecutive doses of vitamin A in alleviating infection in male and female mice on a VAD or control diet. We found that subtherapeutic antibiotic treatment synergized with vitamin A treatment in infected VAD male mice, significantly decreasing systemic bacterial levels, mitigating weight loss and improving survival. These results suggest that assessing vitamin A as a therapy during bacteremia in malnourished patients may lead to improved health outcomes in a subset of patients, especially in the context of antibiotic treatment failure

    Vitamin A supplementation boosts control of antibiotic-resistant Salmonella infection in malnourished mice.

    No full text
    Disseminated disease from non-typhoidal Salmonella enterica strains results in >20% mortality globally. Barriers to effective treatment include emerging multidrug resistance, antibiotic treatment failure, and risk factors such as malnutrition and related micronutrient deficiencies. Individuals in sub-Saharan Africa are disproportionately affected by non-typhoidal S. enterica bloodstream infections. To inform a clinical trial in people, we investigated vitamin A as a treatment in the context of antibiotic treatment failure in a mouse model of vitamin A deficiency. Vitamin A-deficient (VAD) mice exhibited higher systemic bacterial levels with a multidrug-resistant clinical isolate in comparison to mice on a control diet. Sex-specific differences in vitamin A deficiency and disseminated infection with S. enterica serotype Typhimurium (S. Typhimurium) were observed. VAD male mice had decreased weight gain compared to control male mice. Further, infected VAD male mice had significant weight loss and decreased survival during the course of infection. These differences were not apparent in female mice. In a model of disseminated S. Typhimurium infection and antibiotic treatment failure, we assessed the potential of two consecutive doses of vitamin A in alleviating infection in male and female mice on a VAD or control diet. We found that subtherapeutic antibiotic treatment synergized with vitamin A treatment in infected VAD male mice, significantly decreasing systemic bacterial levels, mitigating weight loss and improving survival. These results suggest that assessing vitamin A as a therapy during bacteremia in malnourished patients may lead to improved health outcomes in a subset of patients, especially in the context of antibiotic treatment failure

    A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts

    No full text
    Background: Polygenic scores (PGSs), which assess the genetic risk of individuals for a disease, are calculated as a weighted count of risk alleles identified in genome-wide association studies. PGS methods differ in which DNA variants are included and the weights assigned to them; some require an independent tuning sample to help inform these choices. PGSs are evaluated in independent target cohorts with known disease status. Variability between target cohorts is observed in applications to real data sets, which could reflect a number of factors, e.g., phenotype definition or technical factors. Methods: The Psychiatric Genomics Consortium Working Groups for schizophrenia and major depressive disorder bring together many independently collected case-control cohorts. We used these resources (31,328 schizophrenia cases, 41,191 controls; 248,750 major depressive disorder cases, 563,184 controls) in repeated application of leave-one-cohort-out meta-analyses, each used to calculate and evaluate PGS in the left-out (target) cohort. Ten PGS methods (the baseline PC+T method and 9 methods that model genetic architecture more formally: SBLUP, LDpred2-Inf, LDpred-funct, LDpred2, Lassosum, PRS-CS, PRS-CS-auto, SBayesR, MegaPRS) were compared. Results: Compared with PC+T, the other 9 methods gave higher prediction statistics, MegaPRS, LDPred2, and SBayesR significantly so, explaining up to 9.2% variance in liability for schizophrenia across 30 target cohorts, an increase of 44%. For major depressive disorder across 26 target cohorts, these statistics were 3.5% and 59%, respectively. Conclusions: Although the methods that more formally model genetic architecture have similar performance, MegaPRS, LDpred2, and SBayesR rank highest in most comparisons and are recommended in applications to psychiatric disorders
    corecore