33 research outputs found

    Mutual Interactions of Lamb Waves in Nonlinear Elastic Plates

    No full text
    The mutual interactions of Lamb waves in nonlinear elastic plates are studied in this article. Many researchers have investigated the interactions of Lamb wave modes at nonlinear higher harmonics. However, little is known about nonlinearity-driven Lamb modulations from two primary modes with different frequencies. In this study, the existence of symmetric or antisymmetric mode due to Lamb wave mutual interactions is firstly theoretically formulated. Then, an approach is proposed to evaluate the intensity of phase velocity matching for selecting primary modes. Finally, the characteristics of the modulated wave generation are investigated and demonstrated. The generation of modulated waves in an aluminum plate and fatigue crack can be detected by mutual interactions of Lamb waves. The main contribution of this work is the proposed mutual interaction theory of Lamb waves in fatigue plates, which can guide fatigue detection in the metal plate

    Mutual Interactions of Lamb Waves in Nonlinear Elastic Plates

    No full text
    The mutual interactions of Lamb waves in nonlinear elastic plates are studied in this article. Many researchers have investigated the interactions of Lamb wave modes at nonlinear higher harmonics. However, little is known about nonlinearity-driven Lamb modulations from two primary modes with different frequencies. In this study, the existence of symmetric or antisymmetric mode due to Lamb wave mutual interactions is firstly theoretically formulated. Then, an approach is proposed to evaluate the intensity of phase velocity matching for selecting primary modes. Finally, the characteristics of the modulated wave generation are investigated and demonstrated. The generation of modulated waves in an aluminum plate and fatigue crack can be detected by mutual interactions of Lamb waves. The main contribution of this work is the proposed mutual interaction theory of Lamb waves in fatigue plates, which can guide fatigue detection in the metal plate

    DBD Plasma Combined with Different Foam Metal Electrodes for CO2 Decomposition: Experimental Results and DFT Validations

    No full text
    In the last few years, due to the large amount of greenhouse gas emissions causing environmental issue like global warming, methods for the full consumption and utilization of greenhouse gases such as carbon dioxide (CO2) have attracted great attention. In this study, a packed-bed dielectric barrier discharge (DBD) coaxial reactor has been developed and applied to split CO2 into industrial fuel carbon monoxide (CO). Different packing materials (foam Fe, Al, and Ti) were placed into the discharge gap of the DBD reactor, and then CO2 conversion was investigated. The effects of power, flow velocity, and other discharge characteristics of CO2 conversion were studied to understand the influence of the filling catalysts on CO2 splitting. Experimental results showed that the filling of foam metals in the reactor caused changes in discharge characteristics and discharge patterns, from the original filamentary discharge to the current filamentary discharge as well as surface discharge. Compared with the maximum CO2 conversion of 21.15% and energy efficiency of 3.92% in the reaction tube without the foam metal materials, a maximum CO2 decomposition rate of 44.84%, 44.02%, and 46.61% and energy efficiency of 6.86%, 6.19%, and 8.85% were obtained in the reaction tubes packed with foam Fe, Al, and Ti, respectively. The CO2 conversion rate for reaction tubes filled with the foam metal materials was clearly enhanced compared to the non-packed tubes. It could be seen that the foam Ti had the best CO2 decomposition rate among the three foam metals. Furthermore, we used density functional theory to further verify the experimental results. The results indicated that CO2 adsorption had a lower activation energy barrier on the foam Ti surface. The theoretical calculation was consistent with the experimental results, which better explain the mechanism of CO2 decomposition

    NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana

    No full text
    Abstract Background Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus. Methods The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana. Results When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression. Conclusion NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants

    Diffusion Kurtosis Imaging of Substantia Nigra Is a Sensitive Method for Early Diagnosis and Disease Evaluation in Parkinson’s Disease

    No full text
    Background. To diagnose Parkinson disease (PD) in an early stage and accurately evaluate severity, it is important to develop a sensitive method for detecting structural changes in the substantia nigra (SN). Method. Seventy-two untreated patients with early PD and 72 healthy controls underwent diffusion tensor and diffusion kurtosis imaging. Regions of interest were drawn in the rostral, middle, and caudal SN by two blinded and independent raters. Mean kurtosis (MK) and fractional anisotropy in the SN were compared between the groups. Receiver operating characteristic (ROC) and Spearman correlation analyses were used to compare the diagnostic accuracy and correlate imaging findings with Hoehn-Yahr (H-Y) staging and part III of the Unified Parkinson’s Disease Rating Scale (UPDRS-III). Result. MK in the SN was increased significantly in PD patients compared with healthy controls. The area under the ROC curve was 0.976 for MK in the SN (sensitivity, 0.944; specificity, 0.917). MK in the SN had a positive correlation with H-Y staging and UPDRS-III scores. Conclusion. Diffusion kurtosis imaging is a sensitive method for PD diagnosis and severity evaluation. MK in the SN is a potential biomarker for imaging studies of early PD that can be widely used in clinic

    Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells.

    Get PDF
    Microtubule (MT)-dependent MT nucleation by γ-tubulin is required for interphase plant cells to establish a highly dynamic cortical MT network underneath the plasma membrane, which influences the deposition of cell wall materials and consequently governs patterns of directional cell expansion. Newly formed MTs either assume 40° angles or are parallel to the extant ones. To date, it has been enigmatic how the γ-tubulin complex is recruited to the sidewall of cortical MTs and initiates MT nucleation. Here, we discovered that the augmin complex was recruited to cortical MTs and initiated MT nucleation in both branching and parallel forms. The augmin complex overwhelmingly colocalized with the γ-tubulin complex. When the function of the augmin complex was compromised, MT nucleation frequency was drastically reduced, most obviously for the branching nucleation. Consequently, the augmin knockdown cells displayed highly parallel and bundled MTs, replacing the fine and mesh-like MT network in the wild-type cells. Our findings uncovered a mechanism by which the augmin complex functions in recruiting the γ-tubulin complex to cortical MTs and initiating MT nucleation, and they shifted the paradigm of the commonly perceived mitotic-specific function of augmin and established its crucial function in MT-dependent MT nucleation in interphase plant cells

    Cerebral Microvascular Injury Induced by Lag3‐Dependent α‐Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α‐Synucleinopathies

    No full text
    Abstract The pathological accumulation of α‐synuclein (α‐Syn) and the transmission of misfolded α‐Syn underlie α‐synucleinopathies. Increased plasma α‐Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α‐synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α‐Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post‐injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α‐Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte‐activation gene 3 (Lag3)‐dependent α‐Syn PFFs endocytosis, causing poly(ADP‐ribose)‐driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α‐Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α‐Syn PFFs. Deletion of endothelial cell‐specific Lag3 in vivo reverses the negative effects of α‐Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α‐Syn fibrils to endothelial cells in order to improve cognition

    Stress-Induced Mucus Secretion and Its Composition by a Combination of Proteomics and Metabolomics of the Jellyfish Aurelia coerulea

    No full text
    Background: Jellyfish respond quickly to external stress that stimulates mucus secretion as a defense. Neither the composition of secreted mucus nor the process of secretion are well understood. Methods: Aurelia coerulea jellyfish were stimulated by removing them from environmental seawater. Secreted mucus and tissue samples were then collected within 60 min, and analyzed by a combination of proteomics and metabolomics using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), respectively. Results: Two phases of sample collection displayed a quick decrease in volume, followed by a gradual increase. A total of 2421 and 1208 proteins were identified in tissue homogenate and secreted mucus, respectively. Gene Ontology (GO) analysis showed that the mucus-enriched proteins are mainly located in extracellular or membrane-associated regions, while the tissue-enriched proteins are distributed throughout intracellular compartments. Tryptamine, among 16 different metabolites, increased with the largest-fold change value of 7.8 in mucus, which is consistent with its involvement in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ‘tryptophan metabolism’. We identified 11 metalloproteinases, four serpins, three superoxide dismutases and three complements, and their presence was speculated to be related to self-protective defense. Conclusions: Our results provide a composition profile of proteins and metabolites in stress-induced mucus and tissue homogenate of A. coerulea. This provides insight for the ongoing endeavors to discover novel bioactive compounds. The large increase of tryptamine in mucus may indicate a strong stress response when jellyfish were taken out of seawater and the active self-protective components such as enzymes, serpins and complements potentially play a key role in innate immunity of jellyfish
    corecore