54 research outputs found

    Matrix valued Brownian motion and a paper by Polya

    Full text link
    We give a geometric description of the motion of eigenvalues of a Brownian motion with values in some matrix spaces. In the second part we consider a paper by Polya where he introduced a function close to the Riemann zeta function, which satisfies Riemann hypothesis. We show that each of these two functions can be related to Brownian motion on a symmetric space

    Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    Get PDF
    Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived

    Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta.

    No full text
    International audienceIn plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome

    The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis.

    No full text
    International audienceFarnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis

    Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade

    No full text
    International audienceDominant selectable markers, reporter genes and regulatable systems remain powerful molecular tools for genetic and cell biology studies in fungi. Among Saccharomycotina, it is currently accepted that most species belonging to the genus Candida have adopted a specific codon usage, whereby the CTG codon encodes serine instead of leucine. This group is now widely referred to as the CTG clade. For a long time, this uncommon genetic code has precluded the use of the available Saccharomyces or bacterial markers and reporter systems for genetic studies in Candida species. Over the last 15 years, increasing effort has been made to adapt drug-resistance markers, fluorescent protein variants, luciferase and recombinase genes to favour their expression in species related to the yeast CTG clade. In addition to the growing set of Candida genome sequences, these codon-optimized molecular tools have progressively opened a window for the investigation of the conservation of gene function within Candida species. These technical advances will also facilitate future genetic studies in non-albicans Candida (NAC) species and will help both in elucidating the molecular events underlying pathogenicity and antifungal resistance and in exploring the potential of yeast metabolic engineering

    Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains.

    No full text
    International audienceCandida guilliermondii is an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. This yeast also remains an interesting biotechnological model for the industrial production of value-added metabolites. The recent whole-genome sequencing of the C. guilliermondii ATCC 6260 reference strain provides an interesting resource for elucidating new molecular events supporting pathogenicity, antifungal resistance and for exploring the potential of yeast metabolic engineering. In the present study, we designed an efficient transformation system for C. guilliermondii wild-type strains using both nourseothricin- and hygromycin B-resistant markers. To demonstrate the potential of these drug-resistant cassettes, we carried out the disruption and the complementation of the C. guilliermondii FCY1 gene (which encodes cytosine deaminase) known to be associated with flucytosine sensitivity in yeast. These two new dominant selectable markers represent powerful tools to study the function of a large pallet of genes in this yeast of clinical and biotechnological interest

    Optimization of the URA-blaster disruption system in Candida guilliermondii: efficient gene targeting using the URA3 marker.

    No full text
    International audienceWe established a simple transformation system for C. guilliermondii by developing both an ura3 ATCC 6260-derived recipient strain as well as an URA3 blaster cassette. We demonstrated that this strategy allows efficient multiple gene disruption by homologous recombination with a convenient gene targeting frequency

    Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus

    No full text
    International audienceThe enzyme geranylgeranyl diphosphate synthase (GGPS: EC 2.5.1.1, EC 2.5.1.10, EC 2.5.1.29) catalyses the formation of geranylgeranyl diphosphate (GGPP) from isopentenyl diphosphate and dimethylallyl diphosphate via three successive condensation reactions. A full-length nucleotide sequence of GGPS (named CrGGPS) was cloned from the medicinal plant Catharanthus roseus. The deduced polypeptide has 383 amino acids with a calculated mass of 41.6 kDa and possesses prenyltransferase signatures characteristic of plant type II GGPS. The enzyme was characterized by functional complementation in carotenoid accumulating strains of Escherichia coli. When cultures of Catharanthus cell lines were treated with methyljasmonate, no specific increase in transcript levels were observed. In plants, GGPS are encoded by a small multigene family and the isoforms have been shown to be localized in three different subcellular compartments: chloroplast, endoplasmic reticulum and mitochondria. We investigated the subcellular distribution of CrGGPS through transient transformations of C. roseus cells with a yellow fluorescent protein-fused construct. Our results clearly indicate that CrGGPS is located to plastids within stroma and stromules
    corecore