8 research outputs found
Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis
Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis , especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery
Recommended from our members
Metabolic and Bactericidal Effects of Targeted Suppression of NadD and NadE Enzymes in Mycobacteria
ABSTRACT Mycobacterium tuberculosis remains a major cause of death due to the lack of treatment accessibility, HIV coinfection, and drug resistance. Development of new drugs targeting previously unexplored pathways is essential to shorten treatment time and eliminate persistent M. tuberculosis. A promising biochemical pathway which may be targeted to kill both replicating and nonreplicating M. tuberculosis is the biosynthesis of NAD(H), an essential cofactor in multiple reactions crucial for respiration, redox balance, and biosynthesis of major building blocks. NaMN adenylyltransferase (NadD) and NAD synthetase (NadE), the key enzymes of NAD biosynthesis, were selected as promising candidate drug targets for M. tuberculosis. Here we report for the first time kinetic characterization of the recombinant purified NadD enzyme, setting the stage for its structural analysis and inhibitor development. A protein knockdown approach was applied to validate bothNadD and NadE as target enzymes. Induced degradation of either target enzyme showed a strong bactericidal effect which coincided with anticipated changes in relative levels of NaMN and NaAD intermediates (substrates of NadD and NadE, respectively) and ultimate depletion of the NAD(H) pool. A metabolic catastrophe predicted as a likely result of NAD(H) deprivation of cellular metabolism was confirmed by 13C biosynthetic labeling followed by gas chromatography-mass spectrometry (GC-MS) analysis. A sharp suppression of metabolic flux was observed in multiple NAD(P)(H)-dependent pathways, including synthesis of many amino acids (serine, proline, aromatic amino acids) and fatty acids. Overall, these results provide strong validation of the essential NAD biosynthetic enzymes, NadD and NadE, as antimycobacterial drug targets
Compounds with whole-cell inhibition used for target identification.
<p>Compounds with whole-cell inhibition used for target identification.</p
Location of mutations in <i>Mtb</i> Pks13, mapped onto the thiolation-thioesterase domain of <i>E. coli</i> enterobactin synthase (EntF, PDB: 2roq).
<p>The mutations occur in a 2-helix lid that closes over the active site.</p
Location of mutations observed in MmpL3 (based on Tullius et al., 2011).
<p>Location of mutations observed in MmpL3 (based on Tullius et al., 2011).</p
Location of mutations in AspS, based on the <i>T. thermophilus</i> model (PDB: 1efw).
<p>The peptide chains are shown as blue and gray ribbons, and the tRNA molecules are shown as atomic models. The side-chains of residues Leu515 and Thr559, corresponding to the mutations in the Mtb AspS (F526 and T570), are highlighted in green and are located in the dimer interface.</p