4 research outputs found
Emerging therapies for noninfectious uveitis: what may be coming to the clinics.
Corticosteroids along with other immunomodulatory therapies remain as the mainstay of treatment tor all patients with noninfectious uveitis (NIU). However, the systemic side effects associated with the long-term use of these drugs has encouraged the development of new therapeutic agents in recent times. This review article discusses upcoming therapeutic agents and drug delivery systems that are currently being used to treat patients with NIU. These agents mediate their actions by blocking specific pathways involved in the inflammatory process. Agents discussed in this review include full or recombinant monoclonal antibodies against interleukins such as IL-17 (secukinumab), IL-l (gevokizumab), and IL-6 (tocilizumab and sarilumab), antibody fragments against inflammatory cytokines such as TNF- α (ESBA 105) and T-cell inhibitors such as fusion proteins (abatacept), and next generation calcineurin inhibitors (voclosporin). In addition, administration of immune modulatory therapies using methods such as iontophoresis (EGP-437) and intravitreal injection (sirolimus) for the treatment of NIU\u27 uveitis has also been discussed
Coming to the Clinics
Corticosteroids along with other immunomodulatory therapies remain as the mainstay of treatment tor all patients with noninfectious uveitis (NIU). However, the systemic side effects associated with the long-term use of these drugs has encouraged the development of new therapeutic agents in recent times. This review article discusses upcoming therapeutic agents and drug delivery systems that are currently being used to treat patients with NIU. These agents mediate their actions by blocking specific pathways involved in the inflammatory process. Agents discussed in this review include full or recombinant monoclonal antibodies against interleukins such as IL-17 (secukinumab), IL-l (gevokizumab), and IL-6 (tocilizumab and sarilumab), antibody fragments against inflammatory cytokines such as TNF-(ESBA 105) and T-cell inhibitors such as fusion proteins (abatacept), and next generation calcineurin inhibitors (voclosporin). In addition, administration of immune modulatory therapies using methods such as iontophoresis (EGP-437) and intravitreal injection (sirolimus) for the treatment of NIU' uveitis has also been discussed
Recommended from our members
Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment.
The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA and TCR sequencing to detect and characterize "tumor-matching" (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells
Recommended from our members
Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment.
The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA and TCR sequencing to detect and characterize "tumor-matching" (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells