114 research outputs found

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Nitrosocarbonyl Hetero-Diels–Alder Cycloaddition: A New Tool for Conjugation

    Full text link
    It is demonstrated that nitrosocarbonyl hetero-Diels-Alder chemistry is an efficient and versatile reaction that can be applied in macromolecular synthesis. Polyethylene glycol functionalized with a hydroxamic acid moiety undergoes facile coupling with cyclopentadiene-terminated polystyrene, through a copper-catalyzed as well as thermal hetero-Diels-Alder reaction. The mild and orthogonal methods used to carry out this reaction make it an attractive method for the synthesis of block copolymers. The resulting block copolymers were analyzed and characterized using GPC and NMR. The product materials could be subjected to thermal retro [4 + 2] cycloaddition, allowing for the liberation of the individual polymer chains and subsequent recycling of the diene-terminated polymers. © 2014 American Chemical Society

    Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial

    Get PDF
    Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals

    Fast and catalyst-free hetero-diels-alder chemistry for on demand cyclable bonding/debonding materials

    No full text
    A new dithioester possessing a cyano Z-group (cyano-dithioester (CDTE)) has been synthesized via a 2-step, one-pot reaction. The cyano-substituted dithioester has been found to undergo fast reversible hetero-Diels-Alder (HDA) reactions at ambient temperature, without the need for a catalyst, as demonstrated by ESI-MS and UV-Vis experiments. To apply the bonding/debonding on demand system to materials science, a cyano-dithioester di-linker was synthesized and employed as a di-functional dienophile in a HDA-based polymerization reaction with a bis-cyclopentadiene polymer. The reversible bonding of the polymer systems were demonstrated by on-line UV-Vis spectroscopy, on-line NMR spectroscopy, and on-line high temperature DLS, as well as via GPC in situ trapping experiments and high-level ab initio molecular orbital calculations. © 2013 The Royal Society of Chemistry

    Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry

    No full text
    The widely accepted approach for controlling polymer debonding/rebonding properties in responsive materials has been to purposefully engineer the functional end-groups responsible for monomer dynamic bonding. Here, however, we evidence that the debonding temperature of a polymer can also be tuned by changing the chain length of the polymer building blocks, thus altering the entropy released on debonding. Entropy driven debonding, as governed by building block chain length, is suggested theoretically and realized experimentally for two Diels-Alder polymer systems, each based on a different difunctional diene and a common difunctional dienophile. In each case a significant decrease (as much as 60 °C) in the retro Diels-Alder temperature was observed when the chain length of the difunctional dienophile building block was increased. These results have the potential to fundamentally change the approach utilized to design materials capable of bonding reversibly on demand. © 2013 The Royal Society of Chemistry

    Thermally reversible Diels-Alder-based polymerization: An experimental and theoretical assessment

    No full text
    A pair of monomers capable of undergoing reversible polymerization - based on reversible Diels-Alder (DA) chemistry - as a function of the applied reaction temperature is presented. Specifically, the reaction of isophorone bis(sorbic carbamate), a difunctional diene, with 1,4-phenylenebis(methylene) bis((diethoxyphosphoryl)methanedithioformate), a difunctional dithioester, was studied in detail. Various factors, including the monomer concentration, the type of solvent, and the presence of a Lewis acid, that influence this step-growth polymerization were evaluated. The solvent type was found to have a significant effect on the DA reaction rate. Under the optimized conditions, which are 1.8 g mol -1 of each monomer in acetonitrile with 1.1 equivalents of zinc chloride at 50°C for 4 h, a polymer with a peak molecular weight of 9600 g mol -1 (relative to poly(styrene) standards) was obtained. The resulting polymer was employed to investigate the correlation between time, temperature, and percentage of debonded monomers achieved during the retro DA (rDA) reaction. In addition, theoretical predictions of the rDA temperature were obtained via ab initio quantum chemical calculations. The monomeric diene and dienophile system was employed for the calculations of the equilibrium constants at various rDA reaction temperatures to correlate the percentage of bonded molecules with the applied temperature. It was calculated that 60% of the polymer becomes debonded at a temperature (T qc) of around 220°C, a result that agrees well with that obtained experimentally (T exp = 219°C). © 2012 The Royal Society of Chemistry
    corecore