11 research outputs found

    Genome of Mycoplasma haemofelis, unraveling its strategies for survival and persistence

    Get PDF
    Mycoplasma haemofelis is a mycoplasmal pathogen (hemoplasma) that attaches to the host's erythrocytes. Distributed worldwide, it has a significant impact on the health of cats causing acute disease and, despite treatment, establishing chronic infection. It might also have a role as a zoonotic agent, especially in immunocompromised patients. Whole genome sequencing and analyses of M. haemofelis strain Ohio2 was undertaken as a step toward understanding its survival and persistence. Metabolic pathways are reduced, relying on the host to supply many of the nutrients and metabolites needed for survival. M. haemofelis must import glucose for ATP generation and ribose derivates for RNA/DNA synthesis. Hypoxanthine, adenine, guanine, uracil and CMP are scavenged from the environment to support purine and pyrimidine synthesis. In addition, nicotinamide, amino acids and any vitamins needed for growth, must be acquired from its environment. The core proteome of M. haemofelis contains an abundance of paralogous gene families, corresponding to 70.6% of all the CDSs. This "paralog pool" is a rich source of different antigenic epitopes that can be varied to elude the host's immune system and establish chronic infection. M. haemofelis also appears to be capable of phase variation, which is particularly relevant to the cyclic bacteremia and persistence, characteristics of the infection in the cat. The data generated herein should be of great use for understanding the mechanisms of M. haemofelis infection. Further, it will provide new insights into its pathogenicity and clues needed to formulate media to support the in vitro cultivation of M. haemofelis

    In vitro and in vivo anticancer properties of a Calcarea carbonica derivative complex (M8) treatment in a murine melanoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. Chemotherapeutic approaches to treat melanoma have had only marginal success. Previous studies in mice demonstrated that a high diluted complex derived from <it>Calcarea carbonica </it>(M8) stimulated the tumoricidal response of activated lymphocytes against B16F10 melanoma cells <it>in vitro</it>.</p> <p>Methods</p> <p>Here we describe the <it>in vitro </it>inhibition of invasion and the <it>in vivo </it>anti-metastatic potential after M8 treatment by inhalation in the B16F10 lung metastasis model.</p> <p>Results</p> <p>We found that M8 has at least two functions, acting as both an inhibitor of cancer cell adhesion and invasion and as a perlecan expression antagonist, which are strongly correlated with several metastatic, angiogenic and invasive factors in melanoma tumors.</p> <p>Conclusion</p> <p>The findings suggest that this medication is a promising non-toxic therapy candidate by improving the immune response against tumor cells or even induce direct dormancy in malignancies.</p

    Mycoplasma haemocanis – the canine hemoplasma and its feline counterpart in the genomic era

    Get PDF
    Mycoplasma haemocanis is a hemotrophic mycoplasma (hemoplasma), blood pathogen that may cause acute disease in immunosuppressed or splenectomized dogs. The genome of the strain Illinois, isolated from blood of a naturally infected dog, has been entirely sequenced and annotated to gain a better understanding of the biology of M. haemocanis. Its single circular chromosome has 919 992 bp and a low G + C content (35%), representing a typical mycoplasmal genome. A gene-by-gene comparison against its feline counterpart, M. haemofelis, reveals a very similar composition and architecture with most of the genes having conserved synteny extending over their entire chromosomes and differing only by a small set of unique protein coding sequences. As in M. haemofelis, M. haemocanis metabolic pathways are reduced and apparently rely heavily on the nutrients afforded by its host environment. The presence of a major percentage of its genome dedicated to paralogous genes (63.7%) suggests that this bacterium might use antigenic variation as a mechanism to evade the host’s immune system as also observed in M. haemofelis genome. Phylogenomic comparisons based on average nucleotide identity (ANI) and tetranucleotide signature suggest that these two pathogens are different species of mycoplasmas, with M. haemocanis infecting dogs and M. haemofelis infecting cats

    <it>Mycoplasma haemocanis</it> – the canine hemoplasma and its feline counterpart in the genomic era

    No full text
    Abstract Mycoplasma haemocanis is a hemotrophic mycoplasma (hemoplasma), blood pathogen that may cause acute disease in immunosuppressed or splenectomized dogs. The genome of the strain Illinois, isolated from blood of a naturally infected dog, has been entirely sequenced and annotated to gain a better understanding of the biology of M. haemocanis. Its single circular chromosome has 919 992 bp and a low G + C content (35%), representing a typical mycoplasmal genome. A gene-by-gene comparison against its feline counterpart, M. haemofelis, reveals a very similar composition and architecture with most of the genes having conserved synteny extending over their entire chromosomes and differing only by a small set of unique protein coding sequences. As in M. haemofelis, M. haemocanis metabolic pathways are reduced and apparently rely heavily on the nutrients afforded by its host environment. The presence of a major percentage of its genome dedicated to paralogous genes (63.7%) suggests that this bacterium might use antigenic variation as a mechanism to evade the host’s immune system as also observed in M. haemofelis genome. Phylogenomic comparisons based on average nucleotide identity (ANI) and tetranucleotide signature suggest that these two pathogens are different species of mycoplasmas, with M. haemocanis infecting dogs and M. haemofelis infecting cats.</p

    Microscopy and genomic analysis of Mycoplasma parvum strain Indiana

    Get PDF
    International audienceMycoplasma parvum [Eperythrozoon parvum] is the second hemotrophic mycoplasma (hemoplasma) described in pigs. Unlike M. suis, its closest phylogenetic relative, M. parvum, is considered a non-pathogenic bacterium in this host species. Natural infection of a domestic, 6-month-old splenectomized pig with M. parvum strain Indiana is described herein. Light and scanning electron microscopy of the bacteria were performed in addition to whole genome sequencing, analysis, and comparison to the genome of M. suis strain Illinois. Neither clinical signs nor anemia were observed during the infection. Microscopy analyses revealed coccoid to rod- shaped organisms varying from 0.2 to 0.5 μm; they were observed individually or in short chains by both light and electron microscopy, however less than 30% of the red blood cells were infected at peak bacteremia. The single circular chromosome of M. parvum was only 564 395 bp, smaller than M. genitalium, previously considered the tiniest member of the Mollicutes. Its general genomic features were similar to others in this class and species circumscription was verified by phylogenomic analysis. A gene-by-gene comparison between M. suis and M. parvum revealed all protein coding sequences (CDS) with assigned functions were shared, including metabolic functions, transporters and putative virulence factors. However, the number of CDS in paralogous gene families was remarkably different with about half as many paralogs in M. parvum. The differences in paralogous genes may be implicated in the different pathogenic potential of these two species, however variable gene expression may also play a role. Both are areas of ongoing investigation
    corecore