4,678 research outputs found

    Spin-Orbit Torques in Transition Metal Dichalcogenide/Ferromagnet Heterostructures

    Get PDF
    In recent years, there has been a growing interest in spin-orbit torques (SOTs) for manipulating the magnetization in nonvolatile magnetic memory devices. SOTs rely on the spin-orbit coupling of a nonmagnetic material coupled to a ferromagnetic layer to convert an applied charge current into a torque on the magnetization of the ferromagnet (FM). Transition metal dichalcogenides (TMDs) are promising candidates for generating these torques with both high charge-to-spin conversion ratios, and symmetries and directions which are efficient for magnetization manipulation. Moreover, TMDs offer a wide range of attractive properties, such as large spin-orbit coupling, high crystalline quality and diverse crystalline symmetries. Although numerous studies were published on SOTs using TMD/FM heterostructures, we lack clear understanding of the observed SOT symmetries, directions, and strengths. In order to shine some light on the differences and similarities among the works in literature, in this mini-review we compare the results for various TMD/FM devices, highlighting the experimental techniques used to fabricate the devices and to quantify the SOTs, discussing their potential effect on the interface quality and resulting SOTs. This enables us to both identify the impact of particular fabrication steps on the observed SOT symmetries and directions, and give suggestions for their underlying microscopic mechanisms. Furthermore, we highlight recent progress of the theoretical work on SOTs using TMD heterostructures and propose future research directions.Comment: 14 pages, 1 figure, 1 tabl

    Enhancing magneto-optic effects in two-dimensional magnets by thin-film interference

    Get PDF
    The magneto-optic Kerr effect is a powerful tool for measuring magnetism in thin films at microscopic scales, as was recently demonstrated by the major role it played in the discovery of two-dimensional (2D) ferromagnetism in monolayer CrI3_3 and Cr2_2Ge2_2Te6_6. These 2D magnets are often stacked with other 2D materials in van der Waals heterostructures on a SiO2_2/Si substrate, giving rise to thin-film interference. This can strongly affect magneto-optical measurements, but is often not taken into account in experiments. Here, we show that thin-film interference can be used to engineer the magneto-optical signals of 2D magnetic materials and optimize them for a given experiment or setup. Using the transfer matrix method, we analyze the magneto-optical signals from realistic systems composed of van der Waals heterostructures on SiO2_2/Si substrates, using CrI3_3 as a prototypical 2D magnet, and hexagonal boron nitride (hBN) to encapsulate this air-sensitive layer. We observe a strong modulation of the Kerr rotation and ellipticity, reaching several tens to hundreds of milliradians, as a function of the illumination wavelength, and the thickness of the SiO2_2 and layers composing the van der Waals heterostructure. Similar results are obtained in heterostructures composed by other 2D magnets, such as CrCl3_3, CrBr3_3 and Cr2_2Ge2_2Te6_6. Designing samples for the optimal trade-off between magnitude of the magneto-optical signals and intensity of the reflected light should result in a higher sensitivity and shorter measurement times. Therefore, we expect that careful sample engineering, taking into account thin-film interference effects, will further the knowledge of magnetization in low-dimensional structures.Comment: manuscript: 12 pages, 4 figures. supplementary material: 22 pages, 20 figure

    Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride

    Get PDF
    We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49 000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.Comment: 5 pages, 3 figure

    24 \textmu m length spin relaxation length in boron nitride encapsulated bilayer graphene

    Get PDF
    We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths λs\lambda_s up to 13~\textmu m at room temperature with relaxation times τs\tau_s of 2.5~ns. At 4~K, the diffusion coefficient rises up to 0.52~m2^2/s, a value 5 times higher than the best achieved for graphene spin valves up to date. As a consequence, λs\lambda_s rises up to 24~\textmu m with τs\tau_s as high as 2.9~ns. We characterized 3 different samples and observed that the spin relaxation times increase with the device length. We explain our results using a model that accounts for the spin relaxation induced by the non-encapsulated outer regions.Comment: 5 pages and 4 figure

    Unconventional spin Hall effects in nonmagnetic solids

    Get PDF
    Direct and inverse spin Hall effects lie at the heart of novel applications that utilize spins of electrons as information carriers, allowing generation of spin currents and detecting them via the electric voltage. In the standard arrangement, applied electric field induces transverse spin current with perpendicular spin polarization. Although conventional spin Hall effects are commonly used in spin-orbit torques or spin Hall magnetoresistance experiments, the possibilities to configure electronic devices according to specific needs are quite limited. Here, we investigate unconventional spin Hall effects that have the same origin as conventional ones, but manifest only in low-symmetry crystals where spin polarization, spin current and charge current are not enforced to be orthogonal. Based on the symmetry analysis for all 230 space groups, we have identified crystal structures that could exhibit unusual configurations of charge-to-spin conversion. The most relevant geometries have been explored in more detail; in particular, we have analyzed the collinear components yielding transverse charge and spin current with spin polarization parallel to one of them, as well as the longitudinal ones, where charge and spin currents are parallel. In addition, we have demonstrated that unconventional spin Hall effect can be induced by controllable breaking the crystal symmetries by an external electric field, which opens a perspective for external tuning of spin injection and detection by electric fields. The results have been confirmed by density functional theory calculations performed for various materials relevant for spintronics. We are convinced that our findings will stimulate further computational and experimental studies of unconventional spin Hall effects

    Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

    Full text link
    We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation times in our devices range up to 2 ns with spin relaxation lengths exceeding 12 μ\mum even at room temperature. We obtain that the ratio of the spin relaxation time for spins pointing out-of-plane to spins in-plane is τ/τ\tau_{\bot} / \tau_{||} \approx 0.75 for zero applied perpendicular electric field. By tuning the electric field this anisotropy changes to \approx0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane Rashba spin-orbit coupling

    Group theory analysis of electrons and phonons in N-layer graphene systems

    Full text link
    In this work we study the symmetry properties of electrons and phonons in graphene systems as function of the number of layers. We derive the selection rules for the electron-radiation and for the electron-phonon interactions at all points in the Brillouin zone. By considering these selection rules, we address the double resonance Raman scattering process. The monolayer and bilayer graphene in the presence of an applied electric field are also discussed.Comment: 8 pages, 6 figure

    Charge dynamics in the 2D/3D semiconductor heterostructure WSe2_2/GaAs

    Get PDF
    Understanding the relaxation and recombination processes of excited states in two-dimensional (2D)/three-dimensional (3D) semiconductor heterojunctions is essential for developing efficient optical and (opto)electronic devices which integrate new 2D materials with more conventional 3D ones. In this work, we unveil the carrier dynamics and charge transfer in a monolayer of WSe2_2 on a GaAs substrate. We use time-resolved differential reflectivity to study the charge relaxation processes involved in the junction and how they change when compared to an electrically decoupled heterostructure, WSe2_2/hBN/GaAs. We observe that the monolayer in direct contact with the GaAs substrate presents longer optically-excited carrier lifetimes (3.5 ns) when compared with the hBN-isolated region (1 ns), consistent with a strong reduction of radiative decay and a fast charge transfer of a single polarity. Through low-temperature measurements, we find evidence of a type-II band alignment for this heterostructure with an exciton dissociation that accumulates electrons in the GaAs and holes in the WSe2_2. The type-II band alignment and fast photo-excited carrier dissociation shown here indicate that WSe2_2/GaAs is a promising junction for new photovoltaic and other optoelectronic devices, making use of the best properties of new (2D) and conventional (3D) semiconductors

    Magnetic field control of light-induced spin accumulation in monolayer MoSe2_2

    Full text link
    Semiconductor transition metal dichalcogenides (TMDs) have equivalent dynamics for their two spin/valley species. This arises from their energy-degenerated spin states, connected via time-reversal symmetry. When an out-of-plane magnetic field is applied, time-reversal symmetry is broken and the energies of the spin-polarized bands shift, resulting in different bandgaps and dynamics in the K+_+ and K_- valleys. Here, we use time-resolved Kerr rotation to study the magnetic field dependence of the spin dynamics in monolayer MoSe2_2. We show that the magnetic field can control the light-induced spin accumulation of the two valley states, with a small effect on the recombination lifetimes. We unveil that the magnetic field-dependent spin accumulation is in agreement with hole spin dynamics at the longer timescales, indicating that the electron spins have faster relaxation rates. We propose a rate equation model that suggests that lifting the energy-degeneracy of the valleys induces an ultrafast spin-flip toward the stabilization of the valley with the higher valence band energy. Our results provide an experimental insight into the ultrafast charge and spin dynamics in TMDs and a way to control it, which will be useful for the development of new spintronic and valleytronic applications.Comment: 6 pages, 4 figure
    corecore