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Unconventional spin Hall effects in nonmagnetic solids
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Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 18 October 2021; revised 16 March 2022; accepted 22 March 2022; published 13 April 2022)

Direct and inverse spin Hall effects lie at the heart of novel applications that utilize spins of electrons as
information carriers, allowing the generation of spin currents and detecting them via the electric voltage. In
the standard arrangement, an applied electric field induces transverse spin current with perpendicular spin
polarization. Although conventional spin Hall effects are commonly used in spin-orbit torques or spin Hall
magnetoresistance experiments, the possibilities to configure electronic devices according to specific needs are
quite limited. Here, we investigate unconventional spin Hall effects that have the same origin as conventional
ones, but manifest only in low-symmetry crystals where spin polarization, spin current, and charge current are not
enforced to be orthogonal. Based on the symmetry analysis for all 230 space groups, we have identified crystal
structures that could exhibit unusual configurations of charge-to-spin conversion. The most relevant geometries
have been explored in more detail; in particular, we have analyzed the collinear components yielding transverse
charge and spin current with spin polarization parallel to one of them, as well as the longitudinal ones, where
charge and spin currents are parallel. In addition, we have demonstrated that an unconventional spin Hall effect
can be induced by controllable breaking of the crystal symmetries by an external electric field, which opens
a perspective for the external tuning of spin injection and detection by electric fields. The results have been
confirmed by density functional theory calculations performed for various materials relevant for spintronics. We
are convinced that our findings will stimulate further computational and experimental studies of unconventional
spin Hall effects.

DOI: 10.1103/PhysRevMaterials.6.045004

I. INTRODUCTION

In modern electronic devices that employ spin degrees of
freedom, the mechanisms of conversion between spin and
charge are essential to ensure all-electric control and low con-
sumption of energy [1]. The standard spin Hall effect (SHE)
causes a transverse spin current (JS) in response to a charge
current (JC) whose spin polarization (s) is perpendicular to
both JS and JC . This effect is essential for many spintronics
applications [2,3], such as spin-orbit torques (SOTs) which
are widely exploited for magnetic memories [4–8], and plays
a crucial role in the spin Hall magnetoresistance effect [9,10].
Because the intrinsic, and often dominant, contribution to the
SHE depends only on the electronic structure of a crystal, it
has been intensely explored via first-principles calculations.
Several materials with large spin Hall efficiencies have been
revealed, most of them belonging to elemental metals with
strong spin-orbit coupling (SOC) [11–13] as well as quantum
materials with exotic band features, such as Weyl and Dirac
nodal line semimetals [14–16]. Surprisingly, these efforts
were mostly focused on finding materials with large magni-
tudes for the spin Hall conductivity (SHC) in conventional
configurations, where the spin polarization, spin current, and
charge current are mutually orthogonal. Nonetheless, the elec-
trical generation of a spin current with out-of-plane spin
polarization would be much more efficient for the manipula-
tion of perpendicular magnetic anisotropy ferromagnets, such
as the ones used in modern high-density memory devices.

As this effect is forbidden in highly symmetric conventional
materials, the exploration of spin Hall effects with unusual
spin polarization and current directions is a promising field
for future spintronic applications [17,18].

The spin Hall effect can be in general separated between
extrinsic and intrinsic contributions [2]. While the extrinsic
component can originate from side jump and skew scattering
by impurities, the intrinsic one is determined directly from the
relativistic electronic structure; all these contributions can be
calculated in linear response theory [2,19]. Because the charge
and spin current are related through a third-order spin Hall
conductivity tensor whose indices may correspond to any spa-
tial direction (x, y, or z), the charge-to-spin conversion could
in principle occur in 27 different configurations. Surprisingly,
the unconventional analogs of the spin Hall effect (USHE) had
remained completely unexplored until a few years ago, when
they were theoretically predicted in nonmagnetic crystals with
low symmetry, [20–22] and ferromagnets where symmetry
breaking is caused by the magnetization [23]. From the ex-
perimental side, only recently spin transport measurements in
MoTe2 have revealed components with unusual spin polariza-
tion and spin Hall efficiency comparable with the conventional
one [24,25]. Although it demonstrated their huge potential
for spintronics applications, few compounds allowing USHE
have been so far proposed, and an efficient route to search
for or design materials with appropriate characteristics is still
needed.
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Here, we provide a symmetry-based analysis of the allowed
SHC components—both conventional and unconventional—
and use it to propose experimentally realizable systems for
which the USHEs can be measured and/or controlled. A
symmetry analysis for the allowed components of the SHC
tensors for all 230 space groups is performed using the
tools implemented on the Bilbao Crystallographic Server
(BCS) [26,27]. By revealing the space groups for which
unconventional charge-to-spin conversion configurations are
allowed, we make possible the preselection of potential can-
didates for the highly efficient manipulation of perpendicular
magnetic anisotropy ferromagnets. In order to facilitate the
discussion and further research, we have classified these spin
Hall effects into the following categories: (i) conventional
SHE, either isotropic or anisotropic, where JC , JS, and s are
mutually orthogonal; (ii) collinear SHE, where the charge and
spin currents are transverse, but spin polarization is parallel
to one of them, i.e., Js ⊥ JC and JS,C ‖ s; and (iii) longi-
tudinal SHE where the charge current is parallel to the spin
current (JS ‖ JC) and the spin polarization is unconstrained.
Based on these considerations, we have identified materials
belonging to each class, calculated spin Hall conductivities
using ab initio methods, and whenever possible compared the
results with the existing experimental data. Importantly, we
have also revealed that an unconventional spin Hall effect can
be controlled by an external electric field, which has been
confirmed by first-principles calculations in a prototypical
material (SnTe).

The paper is organized as follows: Section II gives a brief
overview of spin Hall conductivity in the framework of lin-
ear response theory. In Sec. III, we describe the employed
methodology, namely a symmetry analysis based on the TEN-
SOR program [28] as well as details of the first-principles
simulations. In Sec. IV, we discuss the results of the symmetry
analysis complemented by numerical predictions for various
materials relevant for spintronics. Section V discusses uncon-
ventional spin Hall conductivity induced by applied electric
fields. In Sec. VI, we formulate the conclusions and sug-
gestions for further computational and experimental studies.
The Appendix summarizes allowed configurations for the spin
Hall effects for all 230 crystallographic space groups.

II. INTRINSIC SPIN HALL CONDUCTIVITY

In the framework of linear response theory, the spin current
is expressed as

Ji
j = σ i

jkEk ⇒ Ji = σ iE, (1)

which means that an applied electric field Ek induces a spin
current along j with spin polarization along i. The current
Ji

j here is a nine-component tensor corresponding to different
directions of spin current and its spin polarization [20]. The
spin current J is then related to the electric field via the spin
Hall conductivity tensor,

σ i =

⎛
⎜⎝

σ i
xx σ i

xy σ i
xz

σ i
yx σ i

yy σ i
yz

σ i
zx σ i

zy σ i
zz

⎞
⎟⎠, (2)

where i = x, y, z are the spin polarization directions.

Equation (1) implies that the spin Hall conductivity σ i
jk

is a third-order tensor with 3 (electric field direction) ×
3 (spin current direction) × 3 (spin polarization) = 27
independent components since each index can be set
along any of the spatial directions x, y, z. This means
that the expression for the spin Hall effect in linear
response theory [2], can refer to different configurations
of spin-to-charge conversion with essentially the same origin.

The form of the spin Hall conductivity tensor can be, in
most cases, derived based on the Laue class of a crystal, as
shown by Seemann et al. [22]. Nevertheless, it is more con-
venient to use the classification in terms of 230 space groups
because the latter is typically used to describe a specific ma-
terial [29]. We will thus consider the space groups for the rest
of the paper for the sake of accessibility and include the other
classifications in the tables in the Appendix. As we show in
the next sections, the form of the SHC tensor is governed by
the symmetries which may enforce several components to be
zero.

In analogy to the anomalous Hall effect, the SHC tensor
can be expressed by the Kubo formula [2,19],

σ i
jk = −

( e

h̄

) ∫
d3k

(2π )3

∑
n

f (εn,k )�i
jk,n(k), (3)

in which f (εn,k ) is the Fermi-Dirac distribution function and
the spin Berry curvature of the nth band is defined as

�i
jk,n(k) = h̄2

∑
m �=n

−2 Im{〈nk|Ĵ i
j |mk〉〈mk|v̂k|nk〉}

(εn,k − εm,k )2
, (4)

where v̂i = 1
h̄∂Ĥ/∂ki denotes the velocity operator and Ĵ i

j =
{v̂i, σ̂ j}/2 = (v̂iσ̂ j + σ̂ j v̂i )/2 is the spin current operator.
Equation (4) quantitatively describes the deflection of the
electron trajectories caused by a spin-orbit interaction that can
intrinsically occur in materials. It is governed by the strength
of the spin-orbit coupling as well as the magnitude of the
velocity and spin velocity vectors in a specific direction in
momentum space. Equations (3) and (4) can be evaluated
via various approaches, such as the Korringa-Kohn-Rostoker
(KKR) method [30] and tight-binding (TB) Hamiltonians de-
rived from first-principles calculations using either Wannier
interpolation or the projections of wave functions on pseu-
doatomic orbitals (PAOs) [31–34]; the latter, used in this
work, are described in detail in Sec. III.

III. SYMMETRY ANALYSIS AND COMPUTATIONAL
DETAILS

We used the TENSOR program of the Bilbao Crystallo-
graphic Server (BCS) [28] to find the allowed spin Hall
conductivity components σ k

i j for all 230 crystallographic space
groups. To this aim, we have started with expressing the tensor
in Jahn’s notation in accordance with the BCS convention.
The SHC tensor is axial pertaining to the presence of the
spin in the spin Berry curvature [see Eq. (4)] and indepen-
dent in all three indices. It can be written as e{V }{V }{V },
where e denotes axial and { } symbolizes allowed values of
all three spatial indices for the designated vector V . Then, we
have directly used TENSOR to determine which σ k

i j components
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are allowed by symmetry. As for most space groups these
allowed terms are not independent; we have additionally es-
tablished the symmetry-based dependencies. Our analysis can
therefore serve as a useful guide not only for experiments but
also for computational studies, reducing the number of tensor
elements that need to be calculated.

Materials simulations were performed using the density
functional theory (DFT), as implemented in the QUANTUM

ESPRESSO package [35,36]. In the calculations, we treated
the ion-electron interaction with the fully relativistic projec-
tor augmented-wave (or norm-conserving) pseudopotentials
from the PSLIBRARY database [37] and expanded the elec-
tron wave functions in a plane-wave basis, setting the cutoff
to 80 (150) Ry. The exchange and correlation interaction
was accounted for via the generalized gradient approximation
(GGA) parametrized by the Perdew, Burke, and Ernzerhof
(PBE) functional [38]. The atomic coordinates of the struc-
tures were relaxed with the convergence criteria for energy
and forces to 10−6 Ry and 10−4 Ry/bohr, respectively. We
performed the Brillouin zone (BZ) sampling at the DFT level
following the Monkhorst-Pack scheme [39], and converged
the grid sizes for each material.

The intrinsic contributions to the spin Hall conductivity
given by Eqs. (3) and (4) were calculated in a postprocessing
step. First, the tight-binding Hamiltonians were constructed
from the projections of ab initio wave functions on atomic
orbital bases following the implementation in the PAOFLOW

code [40,41]. After interpolating the Hamiltonians on the
ultradense k-point grids converged separately for every con-
sidered compound, the spin Berry curvatures were computed
and integrated over the BZ using the adaptive smearing
method [42]. The external electric fields, when applicable,
were added at the level of the TB Hamiltonians. The com-
putational details for specific materials are given in the
Supplemental Material [43].

IV. RESULTS AND DISCUSSION

The allowed spin Hall conductivity components found via
the symmetry analysis are summarized in the Appendix in
the form of separate tables for each space group. Before we
discuss them in detail, let us make a few general remarks
on the relationships between the space group symmetries and
the occurrence of specific components. We have noticed that
the space groups possessing fewer symmetry operations allow
more independent components of the SHC tensor. For exam-
ple, the simplest space groups, SG 1 and 2, allow for all 27
components. The further we progress towards space groups
with more symmetry elements, one or more components get
connected to each other via symmetry operations. The high-
symmetry space groups, SG 207–230, are found to possess
only one independent SHC tensor component.

The symmetry analysis indicates that all space groups per-
mit the conventional SHE components, which implies the
universality of the spin Hall effect. It means that any con-
ducting material with sufficiently strong SOC will manifest
charge-to-spin conversion. Its strength will depend on the
details of the electronic structure of the specific material and
will be the easiest to achieve in metals, where the Fermi
surface contains states with a large spin Berry curvature.

TABLE I. Conventional components by the number of indepen-
dent components present in all space groups.

Independent components 6 3 2 1

Space groups 1–74 75–194 195–206 207–230

Nevertheless, semiconductors may also exhibit SHE provided
that their Fermi level lies within the valence or conduction
band, as long as those also present a significant spin Berry cur-
vature. The active control of the Fermi level and symmetries in
semiconductors through (electrical) doping, strain, or electric
field, makes them particularly interesting for externally tuning
the strength of SHEs.

While the universal existence of the SHE could be ex-
pected, its demonstration is not straightforward. Here, we
deduce it using symmetry considerations for any space group,
following the arguments suggested by Mook et al. [44]. Based
on Si

jk = viσkv j , which is the symmetry equivalent quantity of
the spin Berry curvature in Eq. (4), we determine the allowed
SHC tensor components. The quantity Si

jk is invariant under
any symmetry operation of a particular space group. There-
fore, in the linear regime,

σ i
jk ≡ Si

jk

Operation−−−−−−−→
Symmetry

{+Si
jk allowed,

−Si
jk not allowed.

(5)

This demonstrates that if Si
jk is positive under a chosen sym-

metry operation (e.g., translation, rotation, mirror reflection,
and inversion operation), the corresponding component of
the spin Hall conductivity is allowed; otherwise, it will be
prohibited by symmetry.

A. Conventional spin Hall effects

In the conventional SHE [see Fig. 1(a)], the charge current
is transverse to both spin current and spin polarization. The
corresponding SHC tensor components, σ i

jk when i �= j �= k,
yield six possible configurations [see Eq. (1)] that can be con-
nected by symmetries. The most efficient spin Hall conductors
are often isotropic, and identified among elemental metals,
such as Pt (SG 225) or β-W (SG 223) [11,45]. This fact
was recently rationalized by Zhang et al. who correlated the
large SHC with the presence of many mirror planes in highly
symmetric crystals [46]. Nonetheless, SHC anisotropy could
be explored in spin-logic devices, where, for example, SOTs
vary in strength depending on the charge current direction.
Low-symmetry crystals can be completely anisotropic with
six independent conventional components, while an increase
in symmetry leads to a more isotropic behavior, as shown in
Table I.

Among the known compounds with anisotropic SHE, are
bulk Td -WTe2 (SG 31), which has six independent con-
ventional configurations with values ranging from −15 to
−200 (h̄/e)(� cm)−1 [47,48], as well as metallic rutile oxides,
such as IrO2 (SG 136) with three independent components
and magnitudes between 10 and −250 (h̄/e)(� cm)−1 [15].
We have also found large spin Hall conductivity in a pyrite-
type structure, PtBi2 (SG 205), whose symmetries allow two
independent SHE components. The values that we estimated
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FIG. 1. Classification of the spin Hall effects. We choose the charge current along the x direction and illustrate (a) conventional SHE with
spin current along y and spin polarization along z (σ z

yx), (b) collinear SHE with spin current and spin polarization along z (σ z
zx), and (c) a

longitudinal spin Hall effect with spin current along x and spin polarization along z (σ z
xx).

from first-principles calculations are σ z
xy = 975 and σ

y
xz =

−742 (h̄/e)(� cm)−1, which yield anisotropy of over 30%.
The spin Hall tensors provided in the Appendix are thus help-
ful to rationalize and interpret the existing results as well as to
design alternative spin Hall materials.

B. Collinear spin Hall effects

As we defined above, the collinear spin Hall conductivity
[see Fig. 1(b)] is the configuration with transverse charge and
spin current, and with the spin polarization aligned either
with the charge current or with the spin current direction.
The components of the SHC tensor are denoted as σ i

jk when
j �= k and i is equal to j or k, e.g., σ z

zx. In Table II, we
summarize the space groups that allow for collinear spin Hall
effects. Note that σ i

ji and σ i
i j always occur together, although

in general they are not equal. While the components with
spin polarization parallel to the charge current were the first
ones reported experimentally [24,25], those with spin currents
parallel to spin polarization could be even more relevant for
applications, as they can directly contribute to the generation
of out-of-plane spin-orbit torques, schematically illustrated in
Fig. 2(a). The materials that seem to reveal the largest po-

TABLE II. Allowed space groups for collinear SHE.

Components Allowed Not allowed

σ x
xy, σ

x
yx 1,2, 3–15, 143–149, 16–142, 150, 152,

151,153, 157, 159, 154-156, 158,
162, 163 160, 161, 164–230

σ x
zx, σ

x
xz 1,2, 75–88, 3–74, 89–142,

143–148, 168–176 149–167, 177–230

σ y
xy, σ

y
yx 1, 2, 143–148, 150, 3–142, 149, 151,

152, 154–156, 158, 153, 157, 159,
160, 161, 164–167 162, 163, 168–230

σ y
yz, σ

y
zy 1, 2, 75–88, 3–74, 89–142,

143–148, 168-176 149–167, 177–230

σ z
yz, σ

z
zy 1,2, 3–15 16–230

σ z
zx, σ

z
xz 1,2 3, 4–230

tential for unconventional SOTs are low-symmetry transition
metal dichalcogenides (TMDs); we will thus analyze them in
detail.

Let us first consider a bulk MoTe2 which typically crys-
tallizes in a semimetallic monoclinic phase (1T ′ or β-MoTe2,
SG 11) with an inversion symmetry, twofold screw axis along
the y direction (C2y) and a mirror plane (My), as indicated in
Fig. 2(b). Experiments typically employ slabs consisting of
several layers. Odd-layered samples still belong to SG 11,
while in the case of an even number of layers, the crystal
will be described by SG 6 [49]. We thus note that the bulk
analysis remains valid, and the form of the SHC tensor will
not change, preserving the same Laue class and the same
nonvanishing components of SHC. Our DFT calculations con-
firmed the presence of two pairs of collinear components,
namely σ x

xy and σ x
yx as well as σ z

zy and σ z
yz. Even though their

magnitudes are not large, the related spin Hall efficiencies
(defined as ratios between spin Hall and charge conductivity,
θ k

i j = σ k
i j/σc, listed in Table III) may exceed 1%, mostly due

to the rather low charge conductivity [σc ∼ 1800 (� cm)−1]
of the semimetal [50].

These results are in qualitative agreement with the mea-
surements of σ z

yz in MoTe2 [24,51]; nevertheless, the observed
values of the spin Hall angles are larger than predicted.
The possible reason is that extrinsic contributions, which are
not included in the calculations, may lead to an additional
increase in spin current. Spin accumulation due to the Rashba-
Edelstein effect could also play a role, but additional studies
will be needed in order to verify and numerically estimate
its contribution. On the other hand, we can also compare the
results with the measurements of unconventional spin-orbit
torques generated by 1T ′-MoTe2 crystals [52]. The out-of-

TABLE III. Spin Hall efficiencies θ k
i j = σ k

i j/σc corresponding to
independent SHC components calculated for 1T ′-MoTe2. We use the
experimental value of σc = 1.8 × 103 (� cm)−1[50]. All spin Hall
angles are expressed in %.

θ x
xy θ y

yy θ x
yx θ y

zx θ x
yz θ y

zz θ x
zy θ z

xy θ y
xx θ z

yx θ y
xz θ z

yz θ z
zy

−1.0 0.4 −0.1 2.2 0.4 0.0 2.0 −7.2 −0.3 10.0 −3.2 0.4 1.14
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FIG. 2. (a) Schematic view of the charge-to-spin conversion generating a spin-orbit torque in the bilayer consisting of MoTe2 and the
ferromagnet (FM). The charge current (JC) induces a spin current (JS) with a collinear spin polarization in a direction perpendicular to the
planes σ z

zy. The spin current then exerts a torque on the magnetization (M) of the ferromagnetic layer. (b) Top and side views of a bulk
1T ′-MoTe2 crystal structure. The mirror plane (My) is denoted by a dashed line and the screw axis C2y is indicated by a solid line. The
parallelogram defines the unit cell.

plane SOTs were observed for charge currents perpendicular
to the mirror plane [My, see Fig. 2(b)], which in our nomencla-
ture corresponds to the σ z

zy component. In contrast, the electric
current flowing along the mirror plane did not yield any un-
conventional spin-orbit torque, which is again consistent with
the theory, as the corresponding σ z

zx conductivity is forced
to zero by symmetry. We emphasize that here the estimated
spin Hall efficiencies agree quite well with the experiment,
suggesting that USHE would play a major role in generating
SOTs.

A similar analysis can be repeated for other TMDs. The ex-
periments performed for WTe2 revealed unconventional SOTs
occurring in the same configurations as in 1T ′-MoTe2 [17,53].
Although bulk WTe2 crystallizes in an orthorhombic phase,
described by SG 31, which yields only six independent con-
ventional components, a few-layer system reduces to SG 6.
The symmetry of the SHC tensor will be thus the same as in
the case of 1T ′-MoTe2 which explains the very similar exper-
imental results. In contrast, recent measurements performed
for hexagonal TMDs, such as WSe2 and MoS2, have not
shown any unconventional spin-orbit torques [54–57]. This
can be again rationalized via a careful analysis of symmetries.
The bulk SG 194 reduces to either SG 164 or SG 187 for
respectively even and odd numbers of layers in the slab [58].
As can be found in the Appendix, these space groups do not
allow for collinear spin Hall effects.

C. Longitudinal spin Hall effects

In the longitudinal spin Hall effect [see Fig. 1(c)], the
applied electric field and induced spin current are parallel
to each other whereas the spin polarization is independent.
These SHC components are denoted as σ i

jk with j = k, and
can be further classified in two categories. The first one will
correspond to components with i �= j, e.g., σ

y
xx, which are

allowed in space groups listed in Table IV. The second one
will refer to the special configurations in which i = j = k.
They will describe USHE that are simultaneously longitudinal
and collinear, representing a peculiar setup where electrons

with spins parallel to the momentum are transmitted through a
material and those with spins aligned antiparallel are reflected,
or vice versa. The corresponding space groups are summa-
rized in Table V.

Longitudinal spin currents have been hardly studied in
nonmagnetic systems. 1T ′-MoTe2 possesses three longitudi-
nal components σ

y
xx, σ

y
zz, and σ

y
yy, but they have not been

reported in experimental studies so far. This is most likely
due to the small values for the SHC (see Table III). A recent
computational high-throughout study revealed that a sizable
σ z

zz component could be found in a metallic P7Ru12Sc2 (SG
174), but again these findings need to be confirmed by exper-
iments [46]. Moreover, another simultaneously collinear and
longitudinal component σ x

xx was predicted in a ferroelectric
GeTe (SG 160) [59]. A conventional inverse spin Hall effect
was detected in the heavily doped ferroelectric samples yield-
ing θSH ≈ 1% [60], but the unusual component has not yet
been measured; we expect its spin Hall efficiency to be lower
than the conventional one. A further systematic search among
semimetals and (doped) semiconductors is needed in order to
identify other potential candidate materials.

TABLE IV. Allowed space groups for longitudinal SHE.

Components Allowed Not allowed

σ y
xx 1, 2, 3–15, 143–149, 16–142, 150, 152,

151, 153, 157, 159, 154–156, 158, 160,
162, 163 161, 164–230

σ z
xx, σ

z
yy 1, 2, 75–88, 3–74, 89–142,

143–148, 168–176 149–167, 177–230

σ x
yy 1, 2, 143–148, 3–142, 149, 151,

150, 152, 154–156, 153, 157, 159, 162,
158, 160, 161, 164–167 163, 168–230

σ x
zz 1,2 3–230

σ y
zz 1, 2, 3–15 16–230
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TABLE V. Allowed space groups with SHE that are collinear and
longitudinal at the same time.

Components Allowed Not allowed

σ x
xx 1–2, 143–148, 3–142, 149, 151,

150, 152, 154–156, 153, 157, 159,
158, 160, 161, 164–167 162, 168–230

σ y
yy 1, 2, 3–15, 16–142, 150, 152,

143-149, 151, 153, 154–156, 158,
157, 159, 162–163 160–161, 164–230

σ z
zz 1–2, 75–88, 3–74, 89–142,

143–148, 168–176 149–165, 177–230

V. UNCONVENTIONAL SPIN HALL EFFECT INDUCED BY
ELECTRIC FIELD

Finally, we will explore the possibility of inducing an
unconventional spin Hall effect by modifying the crystal sym-
metry. Such control can be achieved in situ using an external
electric field or strain applied to any material provided that the
space groups of the crystal without and with the stimulus are
properly adjusted. Here, we will consider the two-dimensional
semiconductor SnTe, in its monolayer form (1ML-SnTe) con-

sisting of two atomic layers as illustrated in Fig. 3(a), which
has been explored in the context of the conventional spin
Hall effect [61,62]. The two-dimensional SnTe (2D-SnTe) is
described by SG 31 and it is invariant under four symmetry
operations: (i) identity E , (ii) mirror reflection (My) with re-
spect to the xz plane, (iii) glide reflection (Mz) combining a
mirror reflection with respect to the xy plane and a fractional
translation by a vector τ = (0.5a, 0.5b, 0) where a and b are
the lattice constants, and (iv) twofold screw rotation consisting
of twofold rotation around x and the fractional translation
by the vector τ . It can be seen that an electric field applied
perpendicular to the plane (along z) will lift both the glide
reflection and twofold screw rotation, reducing the crystal
structure from SG 31 to SG 6. In accordance with the tensor
forms listed in the Appendix, the number of allowed spin Hall
components would increase from 6 to 13.

Figure 3(b) shows the spin Hall conductivities calculated
for 2D-SnTe in the presence of an out-of-plane electric field E .
First, we note that in a two-dimensional system neither charge
nor spin transport can occur along the perpendicular direction
(z) due to the lack of electronic dispersion with respect to
kz. This eliminates all conventional and unconventional SHC
tensor elements that describe configurations with out-of-plane
currents; these zero SHCs are thus not shown. Because the
components σ z

yx and σ x
xy are similar to σ z

yx and σ x
yx, respectively,

FIG. 3. Electric-field-induced unconventional spin Hall effects in 2D-SnTe. (a) Top and side view of the SnTe crystal structure. In the upper
panel, the dashed line denotes the mirror plane (My) which remains the same in the presence of an out-of-plane electric field. In the bottom
panel, the dashed line corresponds to the glide plane (Mz). Together with the twofold screw rotation (C2x) the glide plane vanishes upon the
electric field, as shown in the right-hand side of the structure. (b) Spin Hall conductivity vs chemical potential with and without electric field.
Because σ z

yx and σ x
xy are similar to respectively σ z

yx and σ x
yx , the former has been omitted in the figure. The values of SHC are expressed in bulk

units normalized using the effective thickness of 1ML-SnTe (approximately 10 Å) [61]. (c) Scheme of a prototypical device realizing spin
injection induced by a constant electric field perpendicular to 2D-SnTe.
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they have also been omitted in Fig. 3(b). The most impor-
tant result emerging from the plots is that σ

y
yy, σ

y
xx, σ x

yx, and
σ x

xy are indeed induced by the electric field, which confirms
our hypothesis derived from the symmetry analysis. Notably,
the component σ

y
yy can achieve large magnitudes, comparable

with the conventional spin Hall conductivity for energies close
to EF .

We also observe that the values of the induced SHCs de-
pend on the magnitude of the electric field. This becomes clear
by comparing the dark and light blue curves corresponding
to fields of 0.2 and 1.0 V/nm, respectively. The intrinsic
spin Hall conductivity is entirely determined by the electronic
structure, which is significantly altered by the electric field,
therefore leading to a change in the SHC values over the
entire energy range. Although the conventional components
seem to remain robust, we have found that for the opposite
sign of E , SnTe may become metallic, which means that
spin Hall conductivity must be carefully estimated in each
case.

Last, we note that an unconventional spin Hall effect
induced by an electric field could be detected using ferromag-
netic voltage electrodes which probe locally the spin chemical
potential in a device similar to the one presented in Fig. 3(c).
Since the realization of experiments using a two-dimensional
material seems more challenging, we emphasize that 1ML-
SnTe could be replaced by a multilayer with AA stacking.
This configuration will preserve SG 31 [61], and should yield
essentially the same effect of unconventional charge-to-spin
conversion.

Our results for 2D-SnTe illustrate the power of a simple
symmetry analysis for designing experimentally relevant sys-
tems that exploit external control over the USHE. We note that
similar materials could also potentially provide such control.
For example, other compounds pertaining to SG 31, such as
bulk 1T ′-WTe2, may show a similar external control via an
out-of-plane electric field or strain.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have determined spin Hall conductivity
tensors for all 230 crystallographic space groups. While the
conventional spin Hall effect is universally present in all of
them, the unconventional components are crystal symmetry
selective. We categorized spin Hall effects into conven-
tional, collinear, and longitudinal ones, analyzing important
examples in each class, and providing a guide to design
compounds suitable for applications. Based on the lists of
space groups allowing a specific type of spin Hall conduc-
tivity, further material candidates can be easily found using
crystal structure databases, such as AFLOWLIB or Materials
Project [63,64].

In addition, we have revealed that unconventional spin
Hall components can be induced by an external electric field

which breaks the symmetries of certain crystals, leading to a
change of the space group. We have verified this concept by
performing DFT calculations for 2D-SnTe, and we have found
that an additional component is as large as the conventional
ones, suggesting the possibility of experimental confirmation.
A further systematic search could reveal several materials with
similar or enhanced properties. We believe that the devices
allowing spin injection tuned by the electric field will open
exciting perspectives for spintronics.

Finally, we note that the simultaneous presence of several
conventional and unconventional spin Hall components can
be further explored towards the design of novel spintronic
devices. One of the most interesting possibilities is to use
materials with both collinear and collinear-longitudinal com-
ponents, such as σ

y
yx and σ

y
yy, in order to accomplish a more

efficient switching mechanism of spin-orbit torques. Another
option is a realization of elementary gates in spin logic cir-
cuits. We are convinced that these results and prospects will
stimulate further research from the theoretical and experimen-
tal side.
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APPENDIX

To obtain spin Hall conductivity tensors, we follow the
convention from the Bilbao Crystallographic Server (BCS)
and Physical Properties of Crystals by Nye (Appendix B) [65].
Calculation of any physical tensor using the TENSOR program
requires a well-defined orthogonal basis. An orthogonal basis
(a′, b′, c′) requires

a′ ‖ a, c′ ‖ c∗, b′ ‖ c′ × a, (A1)

where (a, b, c) are conventional crystal lattice vectors [66] in a
reference frame (Ox‖a, Oy‖b, Oz‖c). An orthogonal reference
frame (x, y, z) can be obtained similarly following Eq. (A1)
which is needed to obtain the symmetry-allowed spin Hall
conductivity tensors.

Below we list SHC tensors calculated for all 230 crystal-
lographic space groups. Note that the form of the spin Hall
conductivity tensor is determined by the 11 Laue classes,
except for trigonal lattices, where the crystal class needs to
be additionally specified.
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SG 1-SG 2
Laue class: − 1

σ x =
⎛
⎝σ x

xx σ x
xy σ x

xz

σ x
yx σ x

yy σ x
yz

σ x
zx σ x

zy σ x
zz

⎞
⎠

27 components σ y =
⎛
⎝σ y

xx σ y
xy σ y

xz

σ y
yx σ y

yy σ x
xy

σ y
zx σ y

zy σ y
zz

⎞
⎠

27 independent σ z =
⎛
⎝σ z

xx σ z
xy σ z

xz

σ z
yx σ z

yy σ z
yz

σ x
zx σ z

zy σ z
zz

⎞
⎠

SG 3-SG 15
Laue class: 2/m

σ x =
⎛
⎝ 0 σ x

xy 0
σ x

yx 0 σ x
yz

0 σ x
zy 0

⎞
⎠

13 components σ y =
⎛
⎝σ y

xx 0 σ y
xz

0 σ y
yy 0

σ y
zx 0 σ y

zz

⎞
⎠

13 independent σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 σ z
yz

0 σ z
zy 0

⎞
⎠

SG 16-SG 74
Laue class: mmm

σ x =
⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

6 components σ y =
⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

6 independent σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

SG 75-SG 88
Laue class: 4/m

σ x =
⎛
⎝ 0 0 σ x

xz

0 0 σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

13 components,
7 independent
σ x

zx = σ y
zy, σ x

xz = σ y
yz,

σ y =
⎛
⎝ 0 0 σ y

xz

0 0 σ y
yz

σ y
zx σ y

zy 0

⎞
⎠

σ y
zx = −σ x

zy, σ y
xz = −σ x

yz, σ z =
⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

σ z
xx = σ z

yy, σ z
xy = −σ z

yx

SG 89-SG 142
Laue class: 4/mmm

σ x =
⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

6 components,
3 independent,
σ y

xz = −σ x
yz

σ y =
⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

σ z
xy = −σ z

yx , σ y
zx = −σ x

zy σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

SG 143-SG 148
Laue class: − 3

σ x =
⎛
⎝σ x

xx σ x
xy σ x

xz

σ x
yx σ x

yy σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

21 components,
9 independent,
σ x

xx = −σ x
yy = −σ y

yx = −σ y
xy,

σ x
xz = σ y

yz,

σ y =
⎛
⎝σ y

xx σ y
xy σ y

xz

σ y
yx σ y

yy σ x
xy

σ y
zx σ y

zy 0

⎞
⎠

σ x
xz = σ y

yz, σ y
zx = −σ x

zy,

σ y
xx = σ x

yx = −σ y
yy = σ x

xy,

σ y
xz = σ x

yz, σ z
xx = σ z

yy,

σ z
xy = σ z

yy

σ z =
⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

SG 149, 151, 153, 157,
159, 162, 163
Laue class: − 3m

σ x =
⎛
⎝ 0 σ x

xy 0
σ x

yx 0 σ x
yz

0 σ x
zy 0

⎞
⎠

10 components,
4 independent
σ y

xx = σ x
xy = σ x

yx = −σ y
yy

σ y =
⎛
⎝σ y

xx 0 σ y
xz

0 σ y
yy 0

σ y
zx 0 0

⎞
⎠

σ y
zx = −σ x

zy, σ y
xz = −σ x

yz,

σ z
xy = −σ z

yx
σ z =

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

SG 150, 152, 154-155,
156, 158, 160, 161,
164-167
Laue class: − 3m

σ x =
⎛
⎝σ x

xx 0 0
0 σ x

yy σ x
yz

0 σ x
zy 0

⎞
⎠

10 components,
4 independent
σ x

xx = −σ x
yy = −σ y

yx = −σ y
xy,

σ y =
⎛
⎝ 0 σ y

xy σ y
xz

σ y
yx 0 0

σ y
zx 0 0

⎞
⎠

σ y
zx = −σ x

zy, σ y
xz = −σ x

yz,

σ z
xy = −σ x

yz
σ z =

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

SG 168-SG 176
Laue class:6/m σ x =

⎛
⎝ 0 0 σ x

xz

0 0 σ x
yz

σ x
zx σ x

zy 0

⎞
⎠

13 components,
7 independent
σ x

zx = σ y
zy, σ x

xz = σ y
yz

σ y =
⎛
⎝ 0 0 σ y

xz

0 0 σ y
yz

σ y
zx σ y

zy 0

⎞
⎠

σ y
zx = −σ x

zy, σ y
xz = −σ x

yz,

σ z
xx = σ z

yy, σ z
xy = −σ z

yx
σ z =

⎛
⎝σ z

xx σ z
xy 0

σ z
yx σ z

yy 0
0 0 σ z

zz

⎞
⎠

SG 177-SG 194
Laue class: 6/mmm

σ x =
⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

6 components, 3 σ y =
⎛
⎝0 0 0

0 0 σ x
xy

0 σ y
zy 0

⎞
⎠

independent

σ y
zx = −σ x

zy,

σ y
xz = −σ x

yz,

σ z
xy = −σ z

yx

σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠
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SG 195-SG 206
Laue class: m − 3

σ x =
⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

6 components, 2 σ y =
⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

independent

σ z
xy = σ x

yz = σ y
zx

σ y
xz = σ x

zy = σ z
yx

σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

SG 207-SG 230
Laue class: m − 3m

σ x =
⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

6 components, 1 σ y =
⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

independent

σ z
xy = σ x

yz = σ y
zx =

−σ z
yx = −σ x

zy = −σ y
xz

σ z =
⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠
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