33 research outputs found
3-Alkoxy-4-bromothiophenes: general synthesis of monomers and regio-selective preparation of two dimers
3-Alkoxy-4-bromothiophenes were synthesized in three steps from the readily available methyl 2-carboxylate-3-hydroxythiophene and two isomers of bithiophenes based on the 3-bromo-4-methoxythiophene moiety were regio-selectively prepared. (C) 2011 Elsevier Ltd. All rights reserved
Immobilization of the Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e on Mg2+/Al3+ Layered Double Hydroxide Particles
A novel biomaterial formed by the immobilization of the Aminopeptidase from Aeromonas proteolytica (AAP) on synthetic Mg2+ and Al3+ ion-containing layered double hydroxide (LDH) particles was prepared. Immobilization of AAP on the LDH particles in a buffered, aqueous mixture is rapid such that the maximum loading capacity, 1 × 10−9 moles of AAP/mg LDH, is achieved in a few minutes. X-ray powder diffraction of LDH samples before and after treatment with AAP indicates that the enzyme does not intercalate between the layers of LDH, but instead binds to the surface. Treatment of AAP/LDH with various amounts of salt in a buffered mixture demonstrates that between 15 and 20% of AAP can be removed from the LDH by washing the composite material in 0.2 M NaCl. However, the residual AAP remains bound to the LDH even at 1 M salt concentrations. A suspension of the AAP/LDH biomaterial in 10 mM Tricine buffered, aqueous solution (pH 8.0 and 25° C) catalyzes the hydrolysis of l-leucine-p-nitroanilide demonstrating that immobilized AAP remains available to substrate and retains its catalytic activity. Recycling experiments reveal that the AAP/LDH particles can be recovered and reused multiple times without appreciable loss of activity. This work provides the foundation for the development of materials that will function in the degradation or detection of peptide hormones or neurotoxins
Adaptation of a Smoking Cessation and Prevention Website for Urban American Indian/Alaska Native Youth
Tobacco use among American Indian youth is a disproportionately significant problem. We adapted and modified an existing web-based and youth-focused tobacco control program to make it appropriate for young urban American Indian/Alaska Natives (AI/ANs). The results of the focus group indicate that AI/AN youth were very receptive to the use of a web-based Zine-style intervention tool. They wanted the look and feel of the website to be more oriented toward their cultural images. Future research should examine if successful programs for reducing non-ceremonial tobacco use among urban AI/AN youth can keep young irregular smokers from becoming adult smokers
Immobilization of the Aminopeptidase from Aeromonas Proteolytica on Mg2+/Al3+ Layered Double Hydroxide Particles
A novel biomaterial formed by the immobilization of the Aminopeptidase from Aeromonas proteolytica (AAP) on synthetic Mg2+ and Al3+ ion-containing layered double hydroxide (LDH) particles was prepared. Immobilization of AAP on the LDH particles in a buffered, aqueous mixture is rapid such that the maximum loading capacity, 1 × 10−9 moles of AAP/mg LDH, is achieved in a few minutes. X-ray powder diffraction of LDH samples before and after treatment with AAP indicates that the enzyme does not intercalate between the layers of LDH, but instead binds to the surface. Treatment of AAP/LDH with various amounts of salt in a buffered mixture demonstrates that between 15 and 20% of AAP can be removed from the LDH by washing the composite material in 0.2 M NaCl. However, the residual AAP remains bound to the LDH even at 1 M salt concentrations. A suspension of the AAP/LDH biomaterial in 10 mM Tricine buffered, aqueous solution (pH 8.0 and 25° C) catalyzes the hydrolysis of l-leucine-p-nitroanilide demonstrating that immobilized AAP remains available to substrate and retains its catalytic activity. Recycling experiments reveal that the AAP/LDH particles can be recovered and reused multiple times without appreciable loss of activity. This work provides the foundation for the development of materials that will function in the degradation or detection of peptide hormones or neurotoxins