28 research outputs found

    AFRP20: New P-Wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton

    Get PDF
    Africa’s Cenozoic tectonism is often attributed to mantle plumes, particularly below East Africa, but their morphology, number, location, and impact on the African lithosphere are debated. The broad slow wavespeed African Superplume, ubiquitous in large-scale tomographic models, originates below South Africa, reaching the surface somewhere below East Africa. However, whether the diverse East African mantle geochemistry is best reconciled with one heterogeneous upwelling, or current tomographic models lack the resolution to image multiple distinct plumes, remains enigmatic. S-wavespeed tomographic images of Africa are legion, but higher-frequency P-wavespeed whole-mantle models possessing complementary diagnostic capabilities are comparatively lacking. This hinders attempts to disentangle the effects of Cenozoic hotspot tectonism and Pan African (and older) tectonic events on the East African lithosphere. Here we develop a continental-scale P-wave tomographic model capable of resolving structure from upper-to-lower mantle depths using a recently-developed technique to extract absolute arrival-times from noisy, temporary African seismograph deployments. Shallow-mantle wavespeeds are δVP ≈–4% below Ethiopia, but less anomalous (δVP ≥–2%) below other volcanic provinces. The heterogeneous African Superplume reaches the upper mantle below the Kenyan plateau. Below Ethiopia/Afar we image a second sub-vertical slow wavespeed anomaly rooted near the core-mantle boundary outside the African LLVP, meaning multiple disparately sourced whole-mantle plumes may influence East African magmatism. In contrast to other African cratons, wavespeeds below Tanzania are only fast to 90–135km depth. When interpreted alongside Lower Eocene on-craton kimberlites, our results support pervasive metasomatic lithospheric modification caused by subduction during the Neoproterozoic Pan-African orogeny.A. B. and S. C. are funded by the Natural Environment Research Council (NERC) Grant number NE/R010862/1 from PI Cottaar in Cambridge. A. B. was previously funded by the NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet - Grant number NE/L002515/1 at Imperial College. I. B is funded by Natural Environment Research Council Grant number NE/S014136/1

    Improving Network-on-Chip-based Turbo Decoder Architectures

    Get PDF
    In this work novel results concerning Networkon- Chip-based turbo decoder architectures are presented. Stemming from previous publications, this work concentrates first on improving the throughput by exploiting adaptive-bandwidth-reduction techniques. This technique shows in the best case an improvement of more than 60 Mb/s. Moreover, it is known that double-binary turbo decoders require higher area than binary ones. This characteristic has the negative effect of increasing the data width of the network nodes. Thus, the second contribution of this work is to reduce the network complexity to support doublebinary codes, by exploiting bit-level and pseudo-floatingpoint representation of the extrinsic information. These two techniques allow for an area reduction of up to more than the 40 % with a performance degradation of about 0.2 d

    Birth, growth and computation of pi to ten trillion digits

    Get PDF

    AFRP20: New P-wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton

    No full text
    Africa’s Cenozoic tectonism is often attributed to mantle plumes, particularly below East Africa, but their morphology, number, location, and impact on the African lithosphere are debated. The broad slow wavespeed African Superplume, ubiquitous in large-scale tomographic models, originates below South Africa, reaching the surface somewhere below East Africa. However, whether the diverse East African mantle geochemistry is best reconciled with one heterogeneous upwelling, or current tomographic models lack the resolution to image multiple distinct plumes, remains enigmatic. S-wavespeed tomographic images of Africa are legion, but higher-frequency P-wavespeed whole-mantle models possessing complementary diagnostic capabilities are comparatively lacking. This hinders attempts to disentangle the effects of Cenozoic hotspot tectonism and Pan African (and older) tectonic events on the East African lithosphere. Here we develop a continental-scale P-wave tomographic model capable of resolving structure from upper-to-lower mantle depths using a recently-developed technique to extract absolute arrival-times from noisy, temporary African seismograph deployments. Shallow-mantle wavespeeds are δVP ≈–4% below Ethiopia, but less anomalous (δVP ≥–2%) below other volcanic provinces. The heterogeneous African Superplume reaches the upper mantle below the Kenyan plateau. Below Ethiopia/Afar we image a second sub-vertical slow wavespeed anomaly rooted near the core-mantle boundary outside the African LLVP, meaning multiple disparately sourced whole-mantle plumes may influence East African magmatism. In contrast to other African cratons, wavespeeds below Tanzania are only fast to 90–135km depth. When interpreted alongside Lower Eocene on-craton kimberlites, our results support pervasive metasomatic lithospheric modification caused by subduction during the Neoproterozoic Pan-African orogeny

    The ANO3/MUC15 locus is associated with eczema in families ascertained through asthma

    No full text
    BACKGROUND: A previous genome-wide linkage scan in 295 families of the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA) reported strong evidence of linkage of 11p14 to eczema. OBJECTIVE: Our purpose was to conduct fine-scale mapping of the 11p14 region to identify the genetic variants associated with eczema. METHODS: Association analyses were first conducted in the family sample from the French EGEA by using 2 methods: the family-based association method and logistic regression. Replication of the EGEA findings was sought in French Canadian and United Kingdom family samples, which, similarly to EGEA samples, were ascertained through asthma. We also tested for association in 2 German samples ascertained through eczema. RESULTS: We found significant association of eczema with 11p14 genetic variants in the vicinity of the linkage peak in EGEA (P = 10(-4) for rs1050153 by using the family-based association method, which reached the multiple testing-corrected threshold of 10(-4); P = .003 with logistic regression). Pooled analysis of the 3 asthma-ascertained samples showed strong improvement in the evidence for association (P = 6 × 10(-6) for rs293974, P = 3 × 10(-5) for rs1050153, and P = 8 × 10(-5) for rs15783). No association was observed in the eczema-ascertained samples. CONCLUSION: The significant single nucleotide polymorphisms are located within the overlapping anoctamin 3 (ANO3) and mucin 15 (MUC15) genes. Several lines of evidence suggest that MUC15 is a strong candidate for eczema. Further investigation is needed to confirm our findings and to better understand the role of the ANO3/MUC15 locus in eczema and its relationship with respect to asthma
    corecore