7 research outputs found

    A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug-Induced Peripheral Neuropathy

    Get PDF
    Drug-induced peripheral neuropathy is a side effect of a variety of therapeutic agents that can affect therapeutic adherence and lead to regimen modifications, impacting patient quality of life. The molecular mechanisms involved in the development of this condition have yet to be completely described in the literature. We used a computational network pharmacology ap-proach to explore the Connectivity Map, a large collection of transcriptional profiles from drug perturbation experiments to identify common genes affected by peripheral neuropathy-inducing drugs. Consensus profiles for 98 of these drugs were used to construct a drug–gene perturbation network. We identified 27 genes significantly associated with neuropathy- inducing drugs. These genes may have a potential role in the action of neuropathy-inducing drugs. Our results suggest that molecular mechanisms, including alterations in mitochondrial function, microtubule and cytoskeleton function, ion chan-nels, transcriptional regulation including epigenetic mechanisms, signal transduction, and wound healing, may play a critical role in drug-induced peripheral neuropathy

    Mexico City Contact Network

    No full text
    Reconstruction and analysis of a contact network for Mexico City using mobile device position dat

    Intermunicipal Travel Networks of Mexico

    No full text
    Collection of daily intermunicipal travel networks for Mexico (2020-2021

    Territorial Strategy of Medical Units for Addressing the First Wave of the COVID-19 Pandemic in the Metropolitan Area of Mexico City: Analysis of Mobility, Accessibility and Marginalization

    No full text
    Background. The COVID-19 pandemic has caused an exponential increase in the demand for medical care worldwide. In Mexico, the COVID Medical Units (CMUs) conversion strategy was implemented. Objective. To evaluate the CMU coverage strategy in the Mexico City Metropolitan Area (MCMA) by territory. Materials. The CMU directory was used, as were COVID-19 infection and mobility statistics and Mexican 2020 census information at the urban geographic area scale. The degree of urban marginalization by geographic area was also considered. Method. Using descriptive statistics and the calculation of a CMU accessibility index, population aggregates were counted based on coverage radii. In addition, two regression models are proposed to explain (1) the territorial and temporal trend of COVID-19 infections in the MCMA and (2) the mobility of the COVID-infected population visiting medical units. Results. The findings of the evaluation of the CMU strategy were (1) in the MCMA, COVID-19 followed a pattern of contagion from the urban center to the periphery; (2) given the growth in the number of cases and the overload of medical units, the population traveled greater distances to seek medical care; (3) after the CMU strategy was evaluated at the territory level, it was found that 9 out of 10 inhabitants had a CMU located approximately 7 km away; and (4) at the metropolitan level, the lowest level of accessibility to the CMU was recorded for the population with the highest levels of marginalization, i.e., those residing in the urban periphery

    Early Genomic, Epidemiological, and Clinical Description of the SARS-CoV-2 Omicron Variant in Mexico City

    No full text
    Omicron is the most mutated SARS-CoV-2 variant—a factor that can affect transmissibility, disease severity, and immune evasiveness. Its genomic surveillance is important in cities with millions of inhabitants and an economic center, such as Mexico City. Results. From 16 November to 31 December 2021, we observed an increase of 88% in Omicron prevalence in Mexico City. We explored the R346K substitution, prevalent in 42% of Omicron variants, known to be associated with immune escape by monoclonal antibodies. In a phylogenetic analysis, we found several independent exchanges between Mexico and the world, and there was an event followed by local transmission that gave rise to most of the Omicron diversity in Mexico City. A haplotype analysis revealed that there was no association between haplotype and vaccination status. Among the 66% of patients who have been vaccinated, no reported comorbidities were associated with Omicron; the presence of odynophagia and the absence of dysgeusia were significant predictor symptoms for Omicron, and the RT-qPCR Ct values were lower for Omicron. Conclusions. Genomic surveillance is key to detecting the emergence and spread of SARS-CoV-2 variants in a timely manner, even weeks before the onset of an infection wave, and can inform public health decisions and detect the spread of any mutation that may affect therapeutic efficacy

    The Evolutionary Landscape of SARS-CoV-2 Variant B.1.1.519 and Its Clinical Impact in Mexico City

    No full text
    The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33–2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32–4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves

    The Evolutionary Landscape of SARS-CoV-2 Variant B.1.1.519 and Its Clinical Impact in Mexico City

    No full text
    The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33–2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32–4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves
    corecore