222 research outputs found

    Thermomagnetic detection of recrystallization in FeCoNbBCu nanocrystalline alloys

    Get PDF
    The recrystallization process in FeCoNbBCu nanocrystallinealloys is evidenced from thermomagnetic results as a significant decrease in magnetization at the second crystallization stage. The lowering in the volume fraction of α-FeCo crystals indicates that some of these crystals contribute to the boride phases formed. Electron microscopy images reveal that the final microstructure consists of large crystals (∌500 nm) of a fcc (FeCo)23B6(FeCo)23B6 phase and small crystals (∌20 nm) of bcc α-FeCo and of some boride phases as such (FeCo)2B

    Bronchopulmonary Dysplasia

    Get PDF
    Hospitalizations for respiratory syncytial virus bronchioliti

    A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome

    Get PDF
    AbstractIsolated complex I deficiency is a frequent cause of respiratory chain defects in childhood. In this study, we report our systematic approach with blue native PAGE (BN-PAGE) to study mitochondrial respiratory chain assembly in skin fibroblasts from patients with Leigh syndrome and CI deficiency. We describe five new NDUFS4 patients with a similar and constant abnormal BN-PAGE profile and present a meta-analysis of the literature. All NDUFS4 mutations that have been tested with BN-PAGE result in a constant and similar abnormal assembly profile with a complete loss of the fully assembled complex I usually due to a truncated protein and the loss of its canonical cAMP dependent protein kinase phosphorylation consensus site. We also report the association of abnormal brain MRI images with this characteristic BN-PAGE profile as the hallmarks of NDUFS4 mutations and the first founder NDUFS4 mutations in the North-African population

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure

    Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals

    Full text link
    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that is the elastically soft direction for biaxial expansion of Cu and Ni, but it is for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase-separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along and like in phase-separating systems, while for they behave like in ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in Physical Review

    Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution

    Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    Full text link
    The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Inhibition of PI3K Prevents the Proliferation and Differentiation of Human Lung Fibroblasts into Myofibroblasts: The Role of Class I P110 Isoforms

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-ÎČ (TGF-ÎČ)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-ÎČ signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-ÎČ: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-ÎČ-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110ÎŽ and p110Îł are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and ÎČ. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110Îł and p110α in both TGF-ÎČ-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF
    • 

    corecore