12 research outputs found

    Observations in situ des états de mer depuis l'embouchure jusqu'à l'intérieur du Bassin d'Arcachon : mers de vent, houles et ondes infragravitaires

    Get PDF
    Les embouchures tidales sont des environnements très dynamiques soumises à la fois aux forçages associés aux vagues, aux courants de marée et à l'hydrologie continentale. L'association de ces dynamiques rend la compréhension fine des processus hydrosédimentaires et l'expression des aléas érosion ou submersion particulièrement complexes. Or, et de surcroît en conditions énergétiques lors de la période hivernale, il existe peu de données hydrodynamiques in situ du fait des complexités logistiques liées à l'étendue, à l'accessibilité, à la rapidité et l'ampleur des évolutions morphosédimentaires. Cette contribution détaille les données acquises dans le cadre du projet ARCADE, lors de deux campagnes de mesures long terme réalisées pendant les hivers 2021 et 2022. Les données de vagues, de courants et de marée ont été acquises de manière simultanée depuis le large jusqu'à l'intérieur du Bassin d'Arcachon. Ces jeux de données permettent d'améliorer les connaissances sur la complexité des processus associés à la propagation des vagues et leurs transformations du large vers l'intérieur de la lagune. Un effort particulier est mis ici sur la caractérisation des ondes infragravitaires (ondes longues allant de plusieurs dizaines de secondes à plusieurs minutes) depuis l'embouchure jusqu'au fond du Bassin et du clapot (ondes courtes générées localement dont les longueurs d'ondes sont inférieures à 4 s) dans le bassin lors de différentes conditions de forçage de vent, de marée et de houle au large

    Numerical acoustic modelling of a ventilation unit by 3D FEM and application to the design of an ANC feedforward system

    Full text link
    Strong insulation in modern buildings and housing requires efficient ventilation systems. A popular solution is a decentralized system with one ventilation unit per room, but the noise emitted by such a unit then has a major impact on the comfort. In this research, it is intended to equip an existing ventilation unit with an active noise control (ANC) system to reduce its low-frequency noise emissions. The ANC system will be hosted in an additional duct deporting the air inlet aperture approximately one meter away from its original position. The one-channel feedforward ANC system has a reference microphone located between the fan and the anti-noise loudspeaker and an error microphone at the duct’s end. The transfer functions have been computed by a 3D FEM solver, between the fan and several reference and error microphone locations. Several combinations of reference/error microphone positions were then tested regarding the possible active attenuation of a white noise emitted by the primary source. Optimal control by the ANC controller was assumed, the optimal filter being computed with the help of the corresponding transfer functions. Theoretical attenuations were obtained and optimal positions were finally defined for the two microphones of the ANC system. The first results are finally discussed in this paper and raise some questions regarding the influence of the noise spectrum on the attenuations obtained.Silenthalpic (C7711

    Numerical modelling and characterization of a heat exchanger

    Full text link
    Strong insulation in modern building and housing requires efficient ventilation systems. A popular solution is a decentralized set-up with one ventilation unit per room. The noise emitted by a ventilation unit then has a major impact on the room comfort. In order to reduce the heat transfer to the outside, a ventilation unit is typically designed as a double flux-system with a heat exchanger. This exchanger has a noticeable impact on the acoustic behavior of the ventilation unit. It is therefore of interest to study its effect through numerical simulations. The numerical modelling of a realistic heat exchanger is presented in this paper. The exchanger is placed inside its ventilation casing and modelled using a double equivalent fluid homogenization. Unknown homogenization properties are retrieved in two steps. Acoustic transfer functions are first measured experimentally in order to characterize the propagation paths through the heat exchanger. In a second step, an optimization loop is computed with the numerical model of the heat exchanger. This allows to determine the homogenization properties fitting the measured transfer functions for each frequency. Finally the results for the characterized heat exchanger homogenization model are compared against measurement.Silenthalpic (C7711

    High Frequency Field Measurements of an Undular Bore Using a 2D LiDAR Scanner

    No full text
    The secondary wave field associated with undular tidal bores (known as whelps) has been barely studied in field conditions: the wave field can be strongly non-hydrostatic, and the turbidity is generally high. In situ measurements based on pressure or acoustic signals can therefore be limited or inadequate. The intermittent nature of this process in the field and the complications encountered in the downscaling to laboratory conditions also render its study difficult. Here, we present a new methodology based on LiDAR technology to provide high spatial and temporal resolution measurements of the free surface of an undular tidal bore. A wave-by-wave analysis is performed on the whelps, and comparisons between LiDAR, acoustic and pressure-derived measurements are used to quantify the non-hydrostatic nature of this phenomenon. A correction based on linear wave theory applied on individual wave properties improves the results from the pressure transducer (Root mean square error, R M S E of 0 . 19 m against 0 . 38 m); however, more robust data is obtained from an upwards-looking acoustic sensor despite high turbidity during the passage of the whelps ( R M S E of 0 . 05 m). Finally, the LiDAR scanner provides the unique possibility to study the wave geometry: the distribution of measured wave height, period, celerity, steepness and wavelength are presented. It is found that the highest wave from the whelps can be steeper than the bore front, explaining why breaking events are sometimes observed in the secondary wave field of undular tidal bores

    SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River

    Get PDF
    International audienceSignal-to-noise ratio (SNR) time series acquired by a geodetic antenna were analyzed to retrieve water heights during asymmetric tides on a narrow river using the Interference Pattern Technique (IPT) from Global Navigation Satellite System Reflectometry (GNSS-R). The dynamic SNR method was selected because the elevation rate of the reflecting surface during rising tides is high in the Garonne River with macro tidal conditions. A new process was developed to filter out the noise introduced by the environmental conditions on the reflected signal due to the narrowness of the river compared to the size of the Fresnel areas, the presence of vegetation on the river banks, and the presence of boats causing multiple reflections. This process involved the removal of multipeaks in the Lomb-Scargle Periodogram (LSP) output and an iterative least square estimation (LSE) of the output heights. Evaluation of the results was performed against pressure-derived water heights. The best results were obtained using all GNSS bands (L1, L2, and L5) simultaneously: R = 0.99, ubRMSD = 0.31 m. We showed that the quality of the retrieved heights was consistent, whatever the vertical velocity of the reflecting surface, and was highly dependent on the number of satellites visible. The sampling period of our solution was 1 min with a 5-min moving window, and no tide models or fit were used in the inversion process. This highlights the potential of the dynamic SNR method to detect and monitor extreme events with GNSS-R, including those affecting inland waters such as flash floods

    High Frequency Field Measurements of an Undular Bore Using a 2D LiDAR Scanner

    No full text
    The secondary wave field associated with undular tidal bores (known as whelps) has been barely studied in field conditions: the wave field can be strongly non-hydrostatic, and the turbidity is generally high. In situ measurements based on pressure or acoustic signals can therefore be limited or inadequate. The intermittent nature of this process in the field and the complications encountered in the downscaling to laboratory conditions also render its study difficult. Here, we present a new methodology based on LiDAR technology to provide high spatial and temporal resolution measurements of the free surface of an undular tidal bore. A wave-by-wave analysis is performed on the whelps, and comparisons between LiDAR, acoustic and pressure-derived measurements are used to quantify the non-hydrostatic nature of this phenomenon. A correction based on linear wave theory applied on individual wave properties improves the results from the pressure transducer (Root mean square error, R M S E of 0 . 19 m against 0 . 38 m); however, more robust data is obtained from an upwards-looking acoustic sensor despite high turbidity during the passage of the whelps ( R M S E of 0 . 05 m). Finally, the LiDAR scanner provides the unique possibility to study the wave geometry: the distribution of measured wave height, period, celerity, steepness and wavelength are presented. It is found that the highest wave from the whelps can be steeper than the bore front, explaining why breaking events are sometimes observed in the secondary wave field of undular tidal bores

    Étude comparative des méthodes de reconstruction du champ de vagues à partir de la mesure de pression : Application à la plage de La Salie

    No full text
    International audienceLa reconstruction du champ de vagues basée sur la théorie linéaire, communément appelée méthode de la fonction de transfert, décrit assez bien les caractéristiques moyennes des vagues. Elle est couramment utilisée pour déterminer les paramètres statistiques des vagues mais sous-estime la hauteur des plus grosses vagues. Cependant, bien estimer ces vagues énergétiques est primordial pour l'étude des risques côtiers lors d'évènements extrêmes. La reconstruction linéaire nécessite l'application d'une fréquence de coupure du spectre d'énergie qui induit une perte d'information. Des techniques empiriques qui essaient de combler artificiellement le spectre d'énergie n'améliorent que très peu les plus grosses vagues. Récemment, des formules simples à implémenter permettant des reconstructions linéaires et non-linéaires ont été développées. Nous présentons et comparons dans cet article différentes méthodes de reconstruction du champ de vagues à partir de la pression mesurée au fond lors d'une campagne de mesure réalisée sur la plage de La Salie en avril 2017. Notre étude est centrée sur des vagues très non-linéaires et faiblement dispersives. Une analyse vague à vague met en évidence la capacité de la reconstruction non-linéaire faiblement dispersive à reproduire la hauteur et l'asymétrie des plus grosses vagues contrairement à la formule linéaire couramment utilisée en ingénierie côtière. Mots-clés : Théorie linéaire, non-linéarité, capteurs de pression, reconstruction du champ de vagues

    Observations in situ des états de mer depuis l'embouchure jusqu'à l'intérieur du Bassin d'Arcachon : mers de vent, houles et ondes infragravitaires

    Get PDF
    International audienceLes embouchures tidales sont des environnements très dynamiques soumises à la fois aux forçages associés aux vagues, aux courants de marée et à l'hydrologie continentale. L'association de ces dynamiques rend la compréhension fine des processus hydrosédimentaires et l'expression des aléas érosion ou submersion particulièrement complexes. Or, et de surcroît en conditions énergétiques lors de la période hivernale, il existe peu de données hydrodynamiques in situ du fait des complexités logistiques liées à l'étendue, à l'accessibilité, à la rapidité et l'ampleur des évolutions morphosédimentaires. Cette contribution détaille les données acquises dans le cadre du projet ARCADE, lors de deux campagnes de mesures long terme réalisées pendant les hivers 2021 et 2022. Les données de vagues, de courants et de marée ont été acquises de manière simultanée depuis le large jusqu'à l'intérieur du Bassin d'Arcachon. Ces jeux de données permettent d'améliorer les connaissances sur la complexité des processus associés à la propagation des vagues et leurs transformations du large vers l'intérieur de la lagune. Un effort particulier est mis ici sur la caractérisation des ondes infragravitaires (ondes longues allant de plusieurs dizaines de secondes à plusieurs minutes) depuis l'embouchure jusqu'au fond du Bassin et du clapot (ondes courtes générées localement dont les longueurs d'ondes sont inférieures à 4 s) dans le bassin lors de différentes conditions de forçage de vent, de marée et de houle au large
    corecore