2,485 research outputs found

    Anderson-like impurity in the one-dimensional t-J model: formation of local states and magnetic behaviour

    Get PDF
    We consider an integrable model describing an Anderson-like impurity coupled to an open tt--JJ chain. Both the hybridization (i.e. its coupling to bulk chain) and the local spectrum can be controlled without breaking the integrability of the model. As the hybridization is varied, holon and spinon bound states appear in the many body ground state. Based on the exact solution we study the state of the impurity and its contribution to thermodynamic quantities as a function of an applied magnetic field. Kondo behaviour in the magnetic response of the impurity can be observed provided that its parameters have been adjusted properly to the energy scales of the holon and spinon excitations of the one-dimensional bulk.Comment: 32 pages, 11 figure

    Bounds on set exit times of affine systems, using Linear Matrix Inequalities

    Get PDF
    Efficient computation of trajectories of switched affine systems becomes possible, if for any such hybrid system, we can manage to efficiently compute the sequence of switching times. Once the switching times have been computed, we can easily compute the trajectories between two successive switches as the solution of an affine ODE. Each switching time can be seen as a positive real root of an analytic function, thereby allowing for efficient computation by using root finding algorithms. These algorithms require a finite interval, within which to search for the switching time. In this paper, we study the problem of computing upper bounds on such switching times, and we restrict our attention to stable time-invariant affine systems. We provide semi-definite programming models to compute upper bounds on the time taken by the trajectories of an affine ODE to exit a set described as the intersection of a few generalized ellipsoids. Through numerical experiments, we show that the resulting bounds are tighter than bounds reported before, while requiring only a modest increase in computation time.publishedVersio

    Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials

    Full text link
    The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO2_2) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by dissipation and transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.Comment: preprint, Main article: 7 pages, 3 figures. Supplementary material included in \anc folder: 6 pages, 3 figure

    Data-driven control of switched linear systems with probabilistic stability guarantees

    Full text link
    This paper tackles state feedback control of switched linear systems under arbitrary switching. We propose a data-driven control framework that allows to compute a stabilizing state feedback using only a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require any knowledge on the dynamics or the switching signal, and as a consequence, we aim at solving \emph{uniform} stabilization problems in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop parallelized schemes for both techniques. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to LQR control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.Comment: This is an extended version to the previous pape

    Carrier thermal escape in families of InAs/InP self-assembled quantum dots

    Full text link
    We investigate the thermal quenching of the multimodal photoluminescence from InAs/InP (001) self-assembled quantum dots. The temperature evolution of the photoluminescence spectra of two samples is followed from 10 K to 300 K. We develop a coupled rate-equation model that includes the effect of carrier thermal escape from a quantum dot to the wetting layer and to the InP matrix, followed by transport, recapture or non-radiative recombination. Our model reproduces the temperature dependence of the emission of each family of quantum dots with a single set of parameters. We find that the main escape mechanism of the carriers confined in the quantum dots is through thermal emission to the wetting layer. The activation energy for this process is found to be close to one-half the energy difference between that of a given family of quantum dots and that of the wetting layer as measured by photoluminescence excitation experiments. This indicates that electron and holes exit the InAs quantum dots as correlated pairs

    Geometry of Entanglement Sudden Death: Explicit Examples

    Full text link
    In open quantum systems, entanglement can vanish faster than coherence. This phenomenon is usually called sudden death of entanglement. In [M. O. Terra Cunha, New J. Phys. 9, 237 (2007)] a geometrical explanation was offered and a classification of all possible scenarios was given. Some classes were exemplified, but it was still an open question whether there were examples for the other ones. This was solved in [R.C. Drumond and M.O. Terra Cunha, arXiv:0809.4445v1]. Here we briefly review the problem, state our results in a precise way, discuss the generality of the approach, and add some speculative desirable generalizations.Comment: Contribution written to the Procceedings of 5th Vaxjo Conference on Foundations of Probability and Physic
    • …
    corecore