221 research outputs found

    Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas

    Get PDF
    BACKGROUND: Gliomas are "intraparenchymally metastatic" tumors, invading the brain in a non-destructive way that suggests cooperation between glioma cells and their environment. Recent studies using an engineered rodent C6 tumor cell line have pointed to mechanisms of invasion that involved gap junctional communication (GJC), with connexin 43 as a substrate. We explored whether this concept may have clinical relevance by analyzing the participation of GJC in human glioblastoma invasion. RESULTS: Three complementary in vitro assays were used: (i) seeding on collagen IV, to analyze homocellular interactions between tumor cells (ii) co-cultures with astrocytes, to study glioblastoma/astrocytes relationships and (iii) implantation into organotypic brain slice cultures, that mimic the three-dimensional parenchymal environment. Carbenoxolone, a potent blocker of GJC, inhibited cell migration in the two latter models. It paradoxically increased it in the first one. These results showed that homocellular interaction between tumor cells supports intercellular adhesion, whereas heterocellular glioblastoma/astrocytes interactions through functional GJC conversely support tumor cell migration. As demonstrated for the rodent cell line, connexin 43 may be responsible for this heterocellular functional coupling. Its levels of expression, high in astrocytes, correlated positively with invasiveness in biopsied tumors. CONCLUSIONS: our results underscore the potential clinical relevance of the concept put forward by other authors based on experiments with a rodent cell line, that glioblastoma cells use astrocytes as a substrate for their migration by subverting communication through connexin 43-dependent gap junctions

    Surgical impact on brain tumor invasion: A physical perspective

    Get PDF
    It is conventional strategy to treat highly malignant brain tumors initially with cytoreductive surgery followed by adjuvant radio- and chemotherapy. However, in spite of all such efforts, the patients' prognosis remains dismal since residual glioma cells continue to infiltrate adjacent parenchyma and the tumors almost always recur. On the basis of a simple biomechanical conjecture that we have introduced previously, we argue here that by affecting the 'volume-pressure' relationship and minimizing surface tension of the remaining tumor cells, gross total resection may have an inductive effect on the invasiveness of the tumor cells left behind. Potential implications for treatment strategies are discussed

    Hemorrhage of brain metastasis from non-small cell lung cancer post gefitinib therapy: two case reports and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gefitinib is one of the small molecule inhibitors of epidermal growth factor receptor tyrosine kinase (EGFR TKIs). Clinical trials have demonstrated it is effective for treatment of a subset of patients with advanced non-small cell lung cancer (NSCLC). Gefitinib has been generally considered to be a relatively safe agent. Besides a small proportion of fatal interstitial pneumonia, the common adverse drug reactions of gefitinib include diarrhea and skin rash, which are generally mild and reversible. Herein, we report the first two cases of brain metastasis hemorrhage that might be involved with the use of gefitinib.</p> <p>Case presentation</p> <p>Two patients with brain metastasis from NSCLC developed brain hemorrhage after gefitinib therapy. The hemorrhage in one case occurred one month after gefitinib combined with whole brain radiation therapy (WBRT), and in the another case hemorrhage developed slowly within brain metastases eight months post gefitinib monotherapy for diffuse pulmonary metastasis from a lung cancer undergone surgical removal previously.</p> <p>Conclusion</p> <p>We speculate brain hemorrhage could be one of the adverse drug reactions of gefitinib treatment for NSCLC and suggest clinicians be aware of this possible rare entity. More data are needed to confirm our findings, especially when gefitinib is used in the settings of brain metastases from NSCLC or other origins.</p

    Pathological and Incidental Findings on Brain MRI in a Single-Center Study of 229 Consecutive Girls with Early or Precocious Puberty

    Get PDF
    Central precocious puberty may result from organic brain lesions, but is most frequently of idiopathic origin. Clinical or biochemical factors which could predict a pathological brain MRI in girls with CPP have been searched for. With the recent decline in age at pubertal onset among US and European girls, it has been suggested that only girls with CPP below 6 years of age should have brain MRI performed
    corecore