175 research outputs found

    Preparation of Cu2ZnSnS/Se4 Thin Films from Oxide Precursors and its Prospect for Other Cu2MSnS4 Thin Films

    Get PDF
    In this chapter, the preparation of Cu2ZnSnSe4 (CZTSe) and Cu2ZnSnS4 (CZTS) thin films from oxide precursors was described. Such an oxides‐based route is a low cost, facile way for the kesteries thin films. The rationality of applying oxides method into CZTSe and CZTS thin films was also clarified, including the reactive thermodynamics and annealing process. Finally, this oxide‐based approach is also expected for the preparation of the other Cu2MSnS4 (M= Co2+, Fe2+, Ni2+, Mn2+) thin films

    TeGit: Generating High-Quality Instruction-Tuning Data with Text-Grounded Task Design

    Full text link
    High-quality instruction-tuning data is critical to improving LLM capabilities. Existing data collection methods are limited by unrealistic manual labeling costs or by the hallucination of relying solely on LLM generation. To address the problems, this paper presents a scalable method to automatically collect high-quality instructional adaptation data by training language models to automatically design tasks based on human-written texts. Intuitively, human-written text helps to help the model attenuate illusions during the generation of tasks. Unlike instruction back-translation-based methods that directly take the given text as a response, we require the model to generate the \textit{instruction}, \textit{input}, and \textit{output} simultaneously to filter the noise. The results of the automated and manual evaluation experiments demonstrate the quality of our dataset.Comment: Work in progres

    The contribution of ultracompact dark matter minihalos to the isotropic radio background

    Full text link
    The ultracompact minihalos could be formed during the earlier epoch of the universe. The dark matter annihilation within them is very strong due to the steep density profile, ρr2.25\rho \sim r^{-2.25}. The high energy electrons and positrons from the dark matter annihilation can inverse Compton scatter (ICS) with the background photons, such as CMB photons, to acquire higher energy. On the other hand, the synchrotron radiation can also be produced when they meet the magnetic field. In this paper, we study the signals from the UCMHs due to the dark matter annihilation for the radio, X-ray and γ\gamma-ray band. We found that for the radio emission the UCMHs can provide one kind of source for the radio excess observed by ARCADE 2. But the X-ray signals due to the ICS effect or the γ\gamma-ray signals mainly due to the prompt emission from dark matter would exceed the present observations, such as Fermi, COMPTEL and CHANDRA. We found that the strongest limits on the fraction of UCMHs come from the X-ray observations and the constraints from the radio data are the weakest.Comment: 6 pages, 8 figures, Comments Welcome! Some Refs. are added, some presentation have been corrected. The conclusions remain unchanged. One important reference has been corrected. Some presentations are changed and added according to the referee's comments. Accepted for publication in PR

    Adopting Text Mining on Rehabilitation Therapy Repositioning for Stroke

    Get PDF
    Stroke is a common disabling disease that severely affects the daily life of patients. Accumulating evidence indicates that rehabilitation therapy can improve movement function. However, no clear guidelines have specific and effective rehabilitation therapy schemes, and the development of new rehabilitation techniques has been relatively slow. This study used a text mining approach, the ABC model, to identify an existing rehabilitation candidate therapy method that is most likely to be repositioned for stroke. In the model, we built the internal links of stroke (A), assessment scales (B), and rehabilitation therapies (C) in PubMed and the links were related to upper limb function measurements for patients with stroke. In the first step, using E-utility, we retrieved both stroke-related assessment scales and rehabilitation therapy records and then compiled two datasets, which were called Stroke_Scales and Stroke_Therapies, respectively. In the next step, we crawled all rehabilitation therapies co-occurring with the Stroke_Therapies and then named them as All_Therapies. Therapies that were already included in Stroke_Therapies were deleted from All_Therapies; therefore, the remaining therapies were the potential rehabilitation therapies, which could be repositioned for stroke after subsequent filtration by a manual check. We identified the top-ranked repositioning rehabilitation therapy and subsequently examined its clinical validation. Hand-arm bimanual intensive training (HABIT) was ranked the first in our repositioning rehabilitation therapies and had the most interaction links with Stroke_Scales. HABIT significantly improved clinical scores on assessment scales [Fugl-Meyer Assessment (FMA) and action research arm test (ARAT)] in the clinical validation study for acute stroke patients with upper limb dysfunction. Therefore, based on the ABC model and clinical validation, HABIT is a promising repositioned rehabilitation therapy for stroke, and the ABC model is an effective text mining approach for rehabilitation therapy repositioning. The findings in this study would be helpful in clinical knowledge discovery

    Simultaneous Enhancement of Mechanical and Magnetic Properties in Extremely-Fine Nanograined Ni-P Alloys

    Get PDF
    Exploring structural effects that influence both the mechanics and magnetism in nanocrystalline materials, particularly extremely-fine nanograined ones with grain sizes down to several nanometers, is of high interest for developing multifunctional materials combining superior mechanical and magnetic performances. We found in this work that electrodeposited extremely-fine nanograined Ni-P alloys exhibit a significant enhancement of magnetization, simultaneously along with an increase in hardness, after low-temperature annealing. The relaxation of non-equilibrium structures, precipitation of the second phase and the segregation of P atoms to grain boundaries (GBs) during annealing have then been sequentially evidenced. By systematically comparing the variations in macroscopic and microstructural investigation results among several Ni-P alloys with different P contents, we suggest that the second phase has little effect on magnetization enhancement, and essentially both the structural relaxation and GB segregation can play important roles in hardening by governing GB stability, and in the improvement of magnetization by enhancing Ni–Ni atom exchange interactions

    Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces

    Full text link
    Riemann surfaces are deformed versions of the complex plane in mathematics. Locally they look like patches of the complex plane, but globally, the topology may deviate from a plane. Nanostructured graphitic carbon materials resembling a Riemann surface with helicoid topology are predicted to have interesting electronic and photonic properties. However, fabrication of such processable and large π-extended nanographene systems has remained a major challenge. Here, we report a bottom-up synthesis of a metal-free carbon nanosolenoid (CNS) material with a low optical bandgap of 1.97 eV. The synthesis procedure is rapid and possible on the gram scale. The helical molecular structure of CNS can be observed by direct low-dose high-resolution imaging, using integrated differential phase contrast scanning transmission electron microscopy. Magnetic susceptibility measurements show paramagnetism with a high spin density for CNS. Such a π-conjugated CNS allows for the detailed study of its physical properties and may form the base of the development of electronic and spintronic devices containing CNS species
    corecore