28 research outputs found

    Vitamin A derivatives in the prevention and treatment of human cancer.

    Full text link
    Vitamin A is essential for normal cellular growth and differentiation. A vast amount of laboratory data have clearly demonstrated the potent antiproliferative and differentiation-inducing effects of vitamin A and the synthetic analogues (retinoids). Recent in-vitro work has led to the exciting proposal that protein kinase-C may be centrally involved in many of retinoids' anticancer actions including the effects on ornithine decarboxylase induction, intracellular polyamine levels, and epidermal growth factor receptor number. Several intervention trials have clearly indicated that natural vitamin A at clinically tolerable doses has only limited activity against human neoplastic processes. Therefore, clinical work has focused on the synthetic derivatives with higher therapeutic indexes. In human cancer prevention, retinoids have been most effective for skin diseases, including actinic keratosis, keratoacanthoma, epidermodysplasia verruciformis, dysplastic nevus syndrome, and basal cell carcinoma. Several noncutaneous premaligancies, however, are currently receiving more attention in retinoid trials. Definite retinoid activity has been documented in oral leukoplakia, laryngeal papillomatosis, superficial bladder carcinoma, cervical dysplasia, bronchial metaplasia, and preleukemia. Significant therapeutic advances are also occurring with this class of drugs in some drug-resistant malignancies and several others that have become refractory, including advanced basal cell cancer, mycosis fungoides, melanoma, acute promyelocytic leukemia, and squamous cell carcinoma of the skin and of the head and neck. This report comprehensively presents the clinical data using retinoids as anticancer agents in human premalignant disorders and outlines the ongoing and planned studies with retinoids in combination and adjuvant therapy

    Immunity in Psoriasis

    No full text

    Fundamental questions to sun protection: A continuous education symposium on vitamin D, immune system and sun protection at the University of Zürich

    No full text
    Since exposure to sunlight is a main factor in the development of non-melanoma skin cancer and there are associations between malignant melanoma and short-term intense ultraviolet (UV) exposure, particularly burning in childhood, strict protection from UV-radiation is recommended. However, up to 90% of all requisite vitamin D has to be formed within the skin through the action of the sun—a serious problem, for a connection between vitamin D deficiency, demonstrated in epidemiological studies, and various types of cancer and other diseases has been confirmed. A UVB-triggered skin autonomous vitamin D3 synthesis pathway has recently been described, producing the active Vitamin D metabolite calcitriol. This cutaneous vitamin D3 pathway is unique. Keratinocytes and dendritic cells can convert vitamin D to calcitriol. Cutaneous T cells activated in the presence of calcitriol express the chemokine receptor CCR10 attracting them to the chemokine CCL27 that keratinocytes express selectively in the epidermis, and migrate from dermal layers of the skin to the epidermis under UV radiation. Thus, calcitriol has endocrine roles beyond its calciotropic action, including cell growth and cancer prevention. Therefore, strict sun protection procedures to prevent skin cancer may induce the risk of vitamin D deficiency. As there is evidence that the protective effect of less intense solar radiation can outweigh its mutagenic effect, better balanced approaches to sun protection should be sought
    corecore