14 research outputs found

    The benefit of the glassy state of reinforcing particles for the densification of aluminum matrix composites

    Get PDF
    In metallic glass-reinforced metal matrix composites, the glassy phase can serve a dual purpose: (i) it can behave as soft binder and porosity remover during consolidation; and (ii) it can act as the hard reinforcing phase after densification. The present work aimed to demonstrate the benefit of the glassy reinforcing particles for the densification of aluminum matrix composites. The consolidation behavior of Al–50 vol.% Fe-based alloy mixtures prepared using a glassy Fe66Cr10Nb5B19 alloy powder (Tg = 521 °C, Tx = 573 °C) or a crystalline Fe62Cr10Nb12B16 alloy powder was studied under spark plasma sintering (SPS) and hot pressing (HP) conditions. The powders were consolidated by heating above the glass transition temperature of the glassy alloy (up to 540 °C in SPS and 570 °C in HP). When the coarse aluminum powder was used, the reinforcing particles formed chains within the microstructure. In composites formed from the fine Al powder, the particles of the Fe-based alloy were separated from each other by the metallic matrix, and the tendency to form agglomerates was reduced. The glassy state of the alloy was shown to be beneficial for densification, as the metallic glass acted as a soft binder. The densification enhancement effect was more pronounced in the case of reinforcing particles forming chains. The hardness of the Al–50 vol.% glassy Fe66Cr10Nb5B19 composites obtained by SPS was twice the hardness of the unreinforced sintered aluminum (110 HV1 versus 45 HV1)

    Microstructure and mechanical properties of composites obtained by spark plasma sintering of Al–Fe66Cr10Nb5B19 metallic glass powder mixtures

    Get PDF
    At present, metallic glasses are evaluated as alternative reinforcements for aluminum matrix composites. These composites are produced by powder metallurgy via consolidation of metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy state of the reinforcement during consolidation. However, it is also of interest to track the structure evolution of these composites when partial interaction between the matrix and the metallic glass is allowed during sintering of the mixtures. The present work was aimed to study the microstructure and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.% Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 °C. The microstructure and mechanical properties of composites obtained by SPS and SPS followed by forging, composites with layers of interfacial reaction products of different thicknesses, and metallic glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the microstructural features of the composites on their strength

    Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering

    Get PDF
    In the area of metal matrix composites, novel reinforcing options are currently being evaluated. Particles of amorphous alloys present an interesting possibility to reinforce soft metals. In the present work, the interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering (SPS) was studied for the first time. In order to trace the phase and microstructural changes upon sintering, mixtures containing 20 vol% and 50 vol% of metallic glass were subjected to SPS at 500–570 °C. After SPS at 500 °C, no reaction layer between the metallic glass particles and aluminum was observed. After SPS at 570 °C, a reaction layer containing Fe2Al5 and FeAl3 formed around the Fe-based cores. The Vickers hardness of composites obtained from mixtures containing 20 vol% Fe66Cr10Nb5B19 at 540 °C was 75 HV and increased to 280 HV after sintering at 570 °C due to the formation of thicker reaction layers at the interface. The hardness of the composite sintered from the mixture containing 20 vol% Fe66Cr10Nb5B19 at 570 °C was between the values predicted by Reuss and Voigt models. Comparison of results of SPS of the powder mixtures with those of SPS of a pre-compacted pellet and electric current-free annealing suggests that local heating at the interface caused by interfacial resistance may be an important factor influencing the reaction advancement at the interface and the formation of Al-containing intermetallic

    Corrosion of steel reinforcement embedded in belite sulfoaluminate cement matrices as funcion of hydration Steel corrosion as function of hydration of Belite-Ye'elimite-Ferrite (BYF) cements

    No full text
    Le béton est le matériau le plus utilisé dans le monde. Son succès vient de son accessibilité et ses performances mécaniques, surtout lorsqu'il est renforcé par de l'acier. Dans le béton, l'acier doux est naturellement protégé par la formation d'une couche d'oxyde protectrice. Ceci est possible avec l'alcalinité du béton résultant de l'hydratation du ciment Portland.Cependant, la fabrication du ciment Portland est responsable de 5 à 7% des émissions anthropiques mondiales de CO2. Le développement du ciment Belite-Ye'elimite-Ferrite (BYF) comme liant alternatif est une solution prometteuse avec une diminution de 20 à 30% des émissions de CO2 par rapport à la production de ciment Portland. Les propriétés sont en cours d'évaluation et la possibilité d'utiliser l’acier doux en renfort sans corroder en fait partie.Cette thèse traite de la corrosion de l'acier incorporé dans des matériaux à base de ciment BYF sous différents angles. Tout d'abord, une étude d'hydratation détaillée a été effectuée pour comprendre l'évolution de l'électrolyte, c'est-à-dire de la solution interstitielle et de l'assemblage de phases. Ensuite, la passivation des barres d'armature d'acier ordinaire intégrées dans des mortiers renforcés a été étudiée. De plus, des analyses ont été effectuées avec des échantillons d'acier immergés dans des extraits aqueux de pâtes de ciment équivalentes pour caractériser la structure et l'épaisseur du film passif. Enfin, l'impact des chlorures initiaux sur la corrosion des mortiers renforcés a été évalué.L'hydratation a été caractérisée par plusieurs techniques, au jeune âge et pendant un an, avec des techniques telles que la calorimétrie isotherme, la spectroscopie d'émission optique par plasma à couplage inductif, la thermogravimétrie, la diffraction des rayons X et la porosimétrie par intrusion au mercure. L'évolution de l'acier dans les mortiers a été évaluée avec des techniques électrochimiques. L'applicabilité des techniques non destructives courantes (potentiel de demi-cellule, résistance à la polarisation linéaire, et l'impédance électrochimique) a été validée par des mesures de polarisation potentiodynamique large et une inspection visuelle. Le film passif formé dans des extraits aqueux des mortiers a été caractérisé par des techniques électrochimiques couplées aux mesures de spectroscopie de photoélectrons aux rayons X. Une fois que la passivation établi, l'impact des chlorures initiaux sur les mortiers renforcés a été évalué.Pour le BYF, le processus d'hydratation et les assemblages de phases hydratées sont différents du ciment Portland, mais la solution interstitielle est finalement très basique après un jour (pH de 13). La principale différence est le pH qui est inférieur (10.6) avant la prise. Les mesures ont montré que l'acier se passive avec le même niveau de protection qu’avec le ciment Portland. La différence est le temps nécessaire pour atteindre le meilleur niveau de protection (28 jours avec le ciment BYF au lieu de 7 jours avec le ciment Portland). Les échantillons d’acier immergés dans des extraits aqueux de ciment Portland et BYF après 28 jours d’hydratation ont présenté une épaisseur et une composition similaires, indiquant que le milieu BYF est aussi protecteur que celui de Portland. L'acier passive dans les mortiers BYF (E/C = 0.5) contenant 0.4% de chlorures par masse de ciment, ce qui ne remet pas en question, pour ce nouveau ciment, la limite imposée par la norme européenne EN-206 aux bétons armés.Concrete is the most widely used material in the world. The success lies on its affordability and mechanical performance, especially when reinforced with steel. Once embedded in the concrete, mild steel is naturally protected by the formation of a protecting oxide layer. This is possible thanks to the alkalinity of the concrete which results from the hydration of the Portland cement.However, Portland cement manufacturing is responsible of about 5 to 7% of the global anthropogenic CO2 emissions. The development of Belite-Ye’elimite-Ferrite (BYF) cement as alternative binder is a promising solution with a decrease of 20 to 30% in CO2 emissions compared to Portland production. The properties are being evaluated and the possibility of using mild steel reinforcement without corroding is part of it.This thesis approaches the corrosion of steel embedded in BYF cement based materials from various angles. First, a detailed hydration study was performed to understand the evolution of the “electrolyte”, i.e. of the pore solution and of the phase assemblage. Second, the passivation of ordinary steel rebar embedded in reinforced mortars was investigated. In addition, analyzes were carried out with steel samples immersed in aqueous extracts of equivalent cement pastes to characterize the structure and the thickness of the passive film. Finally, the impact of the initial chlorides on corrosion of reinforced mortars was evaluated.The hydration was characterized by several techniques, at early-age and then over one year, with techniques such as isothermal calorimetry, inductively coupled plasma optical emission spectroscopy, thermogravimetry, X-ray diffraction and mercury intrusion porosimetry. The evolution of steel embedded in mortars was evaluated with several electrochemical techniques. The applicability of current non-destructive techniques (half-cell potential readings, linear polarization resistance and electrochemical impedance spectroscopy) has been validated by large potentiodynamic polarizations and visual inspection. The passive film formed in aqueous extracts of the mortars was characterized with electrochemical techniques coupled to X-ray photoelectron spectroscopy measurements. Once the passivation understood, the impact of the initial chlorides on the reinforced mortars was evaluated.For the BYF, the hydration process and the hydrated phase assemblages are different from Portland cement, but the interstitial solution is finally very basic after one day (pH of 13). The main difference is the pH that is lower (10.6) before setting. The measurements showed that steel was effectively passivated in BYF mortars with the same level of protection as with Portland cement. The difference between the BYF and Portland cement is the time required that to reach the greatest level of protection (28 days instead of 7 days), probably because of initial lower pH value. The steel immersed in Portland and BYF aqueous extracts obtained after 28 days of hydration exhibited similar thickness and composition of protective layer, indicating that BYF media was as protective as Portland ones. Steel passivates in BYF mortars (W/C = 0.5) containing 0.4% chlorides by cement mass which is in agreement with the limit imposed by the European Standard EN-206 to reinforced Portland concretes

    High corrosion and wear resistent Fe60Cr8Nb8B24 amorphous coating produced by thermal spraying

    No full text
    Metallic coatings are generally designed to confer high wear and corrosion resistance to the substrate to be coated. These properties are essential to make structures suitable to resist to aggressive environment and operating conditions. In this context, Fe-based alloys have drawn great attention due to their unique physical and chemical properties and relatively low cost of iron. Compared with traditional crystalline metallic materials, Fe-based amorphous alloys exhibit high strength, hardness and superior corrosion resistance, attributed to their disorder structures as well as chemical homogeneity. Powder alloys can then be used to produce amorphous coatings on steel substrate, improving corrosion and wear properties in aggressive environments. This work reports on the production of high corrosion and wear resistant coatings produced by HVOF (High Velocity Oxygen Fuel) using only commercials precursors. Initially, preliminary studies were made for the evaluation of glass forming ability (GFA) for the selected Fe60Cr8Nb8B24%at. composition. Further analyses of the crystallization of fully amorphous samples were conducted to correlate the crystalline phases with the physical and chemical properties. Then, the production of amorphous coatings was studied. The microstructure of the samples was characterized by optical microscopy (OM), confocal microscopy (CM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Corrosion, wear and hardness tests were performed as well as porosity and oxygen content measurements. The results have shown the feasibility of production of high quality coatings by HVOF (low porosity and oxygen content together with high hardness and large amount of amorphous fraction). However, the corrosion properties of the coatings were found to be impaired by the presence of α-Fe and FexB (x=1,2 and 3) crystalline phases.Universidade Federal de Sao CarlosRevestimentos metálicos sĂŁo geralmente engendrados para serem aplicados em superfĂ­cies de componentes estruturais a fim de conferir elevada resistĂŞncia ao desgaste e/ou Ă  corrosĂŁo. Neste contexto, os revestimentos amorfos Ă  base de ferro com pequenas adições de elementos de liga resistentes Ă  corrosĂŁo sĂŁo promissores, pois apresentam elevada resistĂŞncia mecânica, baixo coeficiente de atrito, rápida formação de filmes passivos estáveis e resistentes aos ataques eletroquĂ­micos, alĂ©m de elevada temperatura de cristalização. Essas ligas, alĂ©m das interessantes combinações entre propriedades quĂ­micas e fĂ­sicas, configuram-se como sistemas de relativo baixo custo que, portanto, sĂŁo viáveis economicamente. A presente dissertação de mestrado investigou a microestrutura de revestimentos da liga amorfizável Fe60Cr8Nb8B24%at. produzidos por aspersĂŁo tĂ©rmica por oxicombustĂ­vel de alta velocidade (HVOF) atravĂ©s do emprego de elementos de pureza comercial. As resistĂŞncias ao desgaste e Ă  corrosĂŁo dos mesmos tambĂ©m foram analisadas. Inicialmente, foram desenvolvidos estudos para avaliar a tendĂŞncia de formação de estrutura amorfa (TFA) para a composição selecionada. Estudos de cristalização tambĂ©m foram conduzidos com a finalidade de correlacionar as fases formadas com as propriedades fĂ­sicas e quĂ­micas apresentadas pelas amostras. Em seguida, a viabilidade em se produzir revestimentos amorfos por HVOF foi investigada. Os revestimentos produzidos foram caracterizados por microscopia Ăłtica (MO), microscopia confocal (MC), microscopia eletrĂ´nica de varredura (MEV), microscopia eletrĂ´nica de transmissĂŁo (MET), difratometria de raios-X (DRX), calorimetria diferencial de varredura (DSC), ensaios de desgaste, ensaios de corrosĂŁo e medidas de dureza, de porosidade e de teor de oxigĂŞnio. Os resultados obtidos indicaram a viabilidade de produção de revestimentos amorfos de elevada qualidade (baixa porosidade e teor de Ăłxidos juntamente com elevada dureza e fração de fase amorfa). Entretanto, a baixa resistĂŞncia Ă  corrosĂŁo apresentada pelos revestimentos deve-se Ă  presença de nanocristais de fases Fe-α e FexB (x=1,2 e 3)
    corecore