5,636 research outputs found

    Non-Gaussianity as a Particle Detector

    Get PDF
    We study the imprints of massive particles with spin on cosmological correlators. Using the framework of the effective field theory of inflation, we classify the couplings of these particles to the Goldstone boson of broken time translations and the graviton. We show that it is possible to generate observable non-Gaussianity within the regime of validity of the effective theory, as long as the masses of the particles are close to the Hubble scale and their interactions break the approximate conformal symmetry of the inflationary background. We derive explicit shape functions for the scalar and tensor bispectra that can serve as templates for future observational searches.Comment: 55 pages, 10 figure

    Vacuum Decay in CFT and the Riemann-Hilbert problem

    Get PDF
    We study vacuum stability in 1+1 dimensional Conformal Field Theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and its novel "functional" version in the gravitational case.Comment: 16 pages, 3 figure

    Partially Massless Fields During Inflation

    Get PDF
    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.Comment: 48 pages, 5 figures. v2: references added, published versio

    The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities

    Get PDF
    Scattering amplitudes at weak coupling are highly constrained by Lorentz invariance, locality and unitarity, and depend on model details only through coupling constants and particle content. In this paper, we develop an understanding of inflationary correlators which parallels that of flat-space scattering amplitudes. Specifically, we study slow-roll inflation with weak couplings to extra massive particles, for which all correlators are controlled by an approximate conformal symmetry on the boundary of the spacetime. After classifying all possible contact terms in de Sitter space, we derive an analytic expression for the four-point function of conformally coupled scalars mediated by the tree-level exchange of massive scalars. Conformal symmetry implies that the correlator satisfies a pair of differential equations with respect to spatial momenta, encoding bulk time evolution in purely boundary terms. The absence of unphysical singularities completely fixes this correlator. A spin-raising operator relates it to the correlators associated with the exchange of particles with spin, while weight-shifting operators map it to the four-point function of massless scalars. We explain how these de Sitter four-point functions can be perturbed to obtain inflationary three-point functions. We reproduce many classic results in the literature and provide a complete classification of all inflationary three- and four-point functions arising from weakly broken conformal symmetry. The inflationary bispectrum associated with the exchange of particles with arbitrary spin is completely characterized by the soft limit of the simplest scalar-exchange four-point function of conformally coupled scalars and a series of contact terms. Finally, we demonstrate that the inflationary correlators contain flat-space scattering amplitudes via a suitable analytic continuation of the external momenta.Comment: 110 pages, 13 figures, 1 table; V3: minor corrections and references adde

    Aggregated functional data model for Near-Infrared Spectroscopy calibration and prediction

    Full text link
    Calibration and prediction for NIR spectroscopy data are performed based on a functional interpretation of the Beer-Lambert formula. Considering that, for each chemical sample, the resulting spectrum is a continuous curve obtained as the summation of overlapped absorption spectra from each analyte plus a Gaussian error, we assume that each individual spectrum can be expanded as a linear combination of B-splines basis. Calibration is then performed using two procedures for estimating the individual analytes curves: basis smoothing and smoothing splines. Prediction is done by minimizing the square error of prediction. To assess the variance of the predicted values, we use a leave-one-out jackknife technique. Departures from the standard error models are discussed through a simulation study, in particular, how correlated errors impact on the calibration step and consequently on the analytes' concentration prediction. Finally, the performance of our methodology is demonstrated through the analysis of two publicly available datasets.Comment: 27 pages, 7 figures, 7 table

    The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization

    Get PDF
    We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.Comment: 128 pages, 15 figures; V3: minor corrections and references adde
    • …
    corecore