15 research outputs found

    Mira's wind explored in scattering infrared CO lines

    Get PDF
    We have observed the intermediate regions of the circumstellar envelope of Mira (o Ceti) in photospheric light scattered by three vibration-rotation transitions of the fundamental band of CO, from low-excited rotational levels of the ground vibrational state, at an angular distance of beta = 2"-7" away from the star. The data were obtained with the Phoenix spectrometer mounted on the 4 m Mayall telescope at Kitt Peak. The spatial resolution is approximately 0.5" and seeing limited. Our observations provide absolute fluxes, leading to an independent new estimate of the mass-loss rate of approximately 3e-7 Msun/yr, as derived from a simple analytic wind model. We find that the scattered intensity from the wind of Mira for 2" < beta < 7" decreases as beta^-3, which suggests a time constant mass-loss rate, when averaged over 100 years, over the past 1200 years.Comment: accepted for publication in the Astrophysical Journa

    HI in circumstellar environments

    Full text link
    We present new results of a spectroscopic survey of circumstellar HI in the direction of evolved stars made with the Nancay Radiotelescope. The HI line at 21 cm has been detected in the circumstellar shells of a variety of evolved stars: AGB stars, oxygen-rich and carbon-rich, Semi-Regular and Miras, and Planetary Nebulae. The emissions are generally spatially resolved, i.e. larger than 4', indicating shell sizes of the order of 1 pc which opens the possibility to trace the history of mass loss over the past ~ 10^4-10^5 years. The line-profiles are sometimes composite. The individual components have generally a quasi-Gaussian shape; in particular they seldom show the double-horn profile that would be expected from the spatially resolved optically thin emission of a uniformly expanding shell. This probably implies that the expansion velocity decreases outwards in the external shells (0.1-1 pc) of these evolved stars. The HI line-profiles do not necessarily match those of the CO rotational lines. Furthermore, the centroid velocities do not always agree with those measured in the CO lines and/or the stellar radial velocities. The HI emissions may also be shifted in position with respect to the central stars. Without excluding the possibility of asymmetric mass ejection, we suggest that these two effects could also be related to a non-isotropic interaction with the local interstellar medium. HI was detected in emission towards several sources (rho Per, alpha Her, delta^2 Lyr, U CMi) that otherwise have not been detected in any radio lines. Conversely it was not detected in the two oxygen-rich stars with substantial mass-loss rate, NML Tau and WX Psc, possibly because these sources are young with hydrogen in molecular form, and/or because the temperature of the circumstellar HI gas is very low (< 5 K).Comment: Accepted for publication in The Astronomical Journa

    Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range

    Get PDF
    Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”

    Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range

    No full text
    Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species\u27 distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from Near Threatened to Vulnerable
    corecore