36 research outputs found

    Characterization of 35 Masson pine (Pinus massoniana) half-sib families from two provinces based on metabolite properties

    Get PDF
    Plant metabolism is an important functional trait, and its metabolites have physiological and ecological functions to adapt to the growth environment. However, the physiological and ecological functions of metabolites from different provinces of the same plant species are still unclear. Therefore, this study aimed to determine whether metabolites from different provinces of Masson pine (Pinus massoniana Lamb.) have the corresponding metabolic traits. The gas chromatography–mass spectrometry technique and metabonomic analysis methods were used to characterize 35 Masson pine half-sib families from two provinces. A total of 116 metabolites were putatively identified in 35 families of Masson pine, among which the average content of organic acids was the highest, followed by saccharides and alcohols, and phosphoric acids. Comparative analysis of metabolite groups showed that organic acids, amines, and others were significantly different between the Masson pine families from Guangxi and Guizhou provinces. Six differential metabolites were found between the provinces from Guizhou and Guangxi, namely caffeic acid, L-ascorbic acid, gentiobiose, xylitol, d-pinitol, and β-sitosterol. The most significantly enriched pathways among differentially expressed metabolites between the two provinces were steroid biosynthesis, phenylpropanoid biosynthesis, glutathione metabolism, pentose and glucuronate interconversions. Overall, the results showed that Masson pine half-sib families from different geographical provinces have different metabolite profiles and their metabolites are affected by geographical provenance and growth environment adaptability. This study revealed that the breeding of Masson pine families from different provinces changed the metabolite profiles, providing a reference for the multipurpose breeding of Masson pine

    Morphological and Transcriptional Characteristics of the Symbiotic Interaction between <i>Pinus massoniana</i> and <i>Suillus bovinus</i>

    No full text
    Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the Pinus massoniana–Suillus bovinus ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity. At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi, the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction, and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogramming of pathways involved in genetic information processing in P. massoniana, particularly at the Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings outline the mechanism involved in the P. massoniana–S. bovinus ECM. Further studies are needed to clarify the role of phenylpropanoid biosynthesis in ECM formation

    The Transcriptomic Responses of Pinus massoniana to Drought Stress

    No full text
    Masson pine (Pinus massoniana) is a major fast-growing timber species planted in southern China, a region of seasonal drought. Using a drought-tolerance genotype of Masson pine, we conducted large-scale transcriptome sequencing using Illumina technology. This work aimed to evaluate the transcriptomic responses of Masson pine to different levels of drought stress. First, 3397, 1695 and 1550 unigenes with differential expression were identified by comparing plants subjected to light, moderate or severe drought with control plants. Second, several gene ontology (GO) categories (oxidation-reduction and metabolism) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (plant hormone signal transduction and metabolic pathways) were enriched, indicating that the expression levels of some genes in these enriched GO terms and pathways were altered under drought stress. Third, several transcription factors (TFs) associated with circadian rhythms (HY5 and LHY), signal transduction (ERF), and defense responses (WRKY) were identified, and these TFs may play key roles in adapting to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to osmotic adjustment (P5CS), abscisic acid (ABA) responses (NCED, PYL, PP2C and SnRK), and reactive oxygen species (ROS) scavenging (GPX, GST and GSR). These transcriptomic results provide insight into the molecular mechanisms of drought stress adaptation in Masson pine

    Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress

    No full text
    Abstract Background The carbon metabolism pathway is of paramount importance for the growth and development of plants, exerting a pivotal regulatory role in stress responses. The exacerbation of drought impacts on the plant carbon cycle due to global warming necessitates comprehensive investigation into the response mechanisms of Masson Pine (Pinus massoniana Lamb.), an exemplary pioneer drought-tolerant tree, thereby establishing a foundation for predicting future forest ecosystem responses to climate change. Results The seedlings of Masson Pine were utilized as experimental materials in this study, and the transcriptome, metabolome, and photosynthesis were assessed under varying temperatures and drought intensities. The findings demonstrated that the impact of high temperature and drought on the photosynthetic rate and transpiration rate of Masson Pine seedlings was more pronounced compared to individual stressors. The analysis of transcriptome data revealed that the carbon metabolic pathways of Masson Pine seedlings were significantly influenced by high temperature and drought co-stress, with a particular impact on genes involved in starch and sucrose metabolism. The metabolome analysis revealed that only trehalose and Galactose 1-phosphate were specifically associated with the starch and sucrose metabolic pathways. Furthermore, the trehalose metabolic heat map was constructed by integrating metabolome and transcriptome data, revealing a significant increase in trehalose levels across all three comparison groups. Additionally, the PmTPS1, PmTPS5, and PmTPPD genes were identified as key regulatory genes governing trehalose accumulation. Conclusions The combined effects of high temperature and drought on photosynthetic rate, transpiration rate, transcriptome, and metabolome were more pronounced than those induced by either high temperature or drought alone. Starch and sucrose metabolism emerged as the pivotal carbon metabolic pathways in response to high temperature and drought stress in Masson pine. Trehalose along with PmTPS1, PmTPS5, and PmTPPD genes played crucial roles as metabolites and key regulators within the starch and sucrose metabolism

    Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province

    No full text
    The spatial heterogeneity on a regional scale of forest biomass is caused by multiple biotic and abiotic factors. However, the contributions of biotic and abiotic factors to the spatial heterogeneity of forest biomass remain unclear. Based on the data of the National Forest Continuous Inventory (NFCI), digital elevation model (DEM), and meteorological data of Guizhou Province in 2015, we studied the spatial heterogeneity of the aboveground forest biomass in Guizhou province and evaluated the contribution rates of its influencing factors using Moran’s I, semivariogram, distance-based Moran’s eigenvector maps (dbMEMs), and variance partitioning. The results showed that the forest biomass in Guizhou province had strong spatial heterogeneity. Biotic and abiotic factors explained 34.4% and 19.2% of the spatial variation in forest biomass, respectively. Among the biotic factors, the average height of the stand had the greatest influence on forest biomass, while annual precipitation had the greatest influence on forest biomass among abiotic factors. Spatial factors only explained 0.7% of the spatial variation of forest biomass, indicating that the contribution of spatial factors can be explained by some measured abiotic factors. This study provided an effective approach to understand the underlying mechanisms of spatial allocation of forest biomass

    Transcriptome-Wide Identification and Expression Profiling of SPX Domain-Containing Members in Responses to Phosphorus Deprivation of <i>Pinus massoniana</i>

    No full text
    The SPX domain-encoding proteins are believed to play important roles in phosphorus (Pi) homeostasis and signal transduction in plants. However, the overall information and responses of SPXs to phosphorus deficiency in pines, remain undefined. In this study, we screened the transcriptome data of Pinus massoniana in response to phosphorus deprivation. Ten SPX domain-containing genes were identified. Based on the conserved domains, the P. massoniana SPX genes were divided into four different subfamilies: SPX, SPX-MFS, SPX-EXS, and SPX-RING. RNA-seq analysis revealed that PmSPX genes were differentially expressed in response to phosphorus deprivation. Furthermore, real-time quantitative PCR (RT-qPCR) showed that PmSPX1 and PmSPX4 showed different expression patterns in different tissues under phosphorus stress. The promoter sequence of 2284 bp upstream of PmSPX1 was obtained by the genome walking method. A cis-element analysis indicated that there were several phosphorus stress response-related elements (e.g., two P1BS elements, a PHO element, and a W-box) in the promoter of PmSPX1. In addition, the previously obtained PmSPX2 promoter sequence contained a W-box, and it was shown that PmWRKY75 could directly bind to the PmSPX2 promoter using yeast one-hybrid analysis in this study. These results presented here revealed the foundational functions of PmSPXs in maintaining plant phosphorus homeostasis

    Heteroblastic Foliage Affects the Accumulation of Non-Structural Carbohydrates and Biomass in <i>Pinus massoniana</i> (Lamb.) Seedlings

    No full text
    Pines have heteroblastic foliage (primary and secondary needles) during seedling stage, but how heteroblastic foliage affects carbon storage and biomass accumulation, contributing to seedling quality, is unclear. We investigated the influences of heteroblastic foliage on photosynthetic physiological characteristics, non-structural carbohydrate (NSC) and biomass accumulation in current-year seedlings; the key factors determining biomass accumulation were mainly determined by principal component screening, Spearman correlation, and path analysis. The results indicated that (1) primary needles have high photosynthetic pigments (chlorophyll a and total chlorophyll), net photosynthetic rates (Pn), the potential maximum photochemical efficiency (Fv/Fm), and leaf instantaneous water use efficiency (WUEi), whereas higher non-photochemical quenching (NPQ) suggested that sudden light increases induce the initiation of quenching mechanism in primary needles; additionally, secondary needles had a lower transpiration rate (Tr), limiting stomata (Ls), and light saturation point. (2) Secondary needles promoted soluble sugar (fructose and glucose) increases in leaves compared to that of primary needles and increased the leaf biomass accumulation (from 47.06% to 54.30%), enhancing the overall ability of photosynthetic organs; additionally, secondary needles can enhance the proportion of starch storage in the roots, and NSC accumulation was significantly increasing in the seedling leaves and roots. (3) Photosynthetic pigments (carotenoids, chlorophyll a, and total chlorophyll) had direct positive effects on primary needle seedling (PNS) biomass and promoted biomass by indirectly increasing soluble sugar synthesis in the stems. The Pn was the main physiological factor determining PNS biomass accumulation. In addition, the WUEi, Ls, and NPQ had direct negative effects on PNS biomass accumulation, inhibiting photosynthesis to limit seedling growth. Considering the functional traits in heteroblastic foliage is necessary when assessing different leaf types of Pinus massoniana (Lamb.) seedlings, in particular those threats implicated in light, water, and temperature relations. Our results can be beneficial to guide the establishment of seedling management and afforestation measures

    Transcriptome-Wide Identification and Expression Profiling of SPX Domain-Containing Members in Responses to Phosphorus Deprivation of Pinus massoniana

    No full text
    The SPX domain-encoding proteins are believed to play important roles in phosphorus (Pi) homeostasis and signal transduction in plants. However, the overall information and responses of SPXs to phosphorus deficiency in pines, remain undefined. In this study, we screened the transcriptome data of Pinus massoniana in response to phosphorus deprivation. Ten SPX domain-containing genes were identified. Based on the conserved domains, the P. massoniana SPX genes were divided into four different subfamilies: SPX, SPX-MFS, SPX-EXS, and SPX-RING. RNA-seq analysis revealed that PmSPX genes were differentially expressed in response to phosphorus deprivation. Furthermore, real-time quantitative PCR (RT-qPCR) showed that PmSPX1 and PmSPX4 showed different expression patterns in different tissues under phosphorus stress. The promoter sequence of 2284 bp upstream of PmSPX1 was obtained by the genome walking method. A cis-element analysis indicated that there were several phosphorus stress response-related elements (e.g., two P1BS elements, a PHO element, and a W-box) in the promoter of PmSPX1. In addition, the previously obtained PmSPX2 promoter sequence contained a W-box, and it was shown that PmWRKY75 could directly bind to the PmSPX2 promoter using yeast one-hybrid analysis in this study. These results presented here revealed the foundational functions of PmSPXs in maintaining plant phosphorus homeostasis

    Proteomic Insight into the Symbiotic Relationship of Pinus massoniana Lamb and Suillus luteus towards Developing Al-Stress Resistance

    No full text
    Global warming significantly impacts forest range areas by increasing soil acidification or aluminum toxicity. Aluminum (Al) toxicity retards plant growth by inhibiting the root development process, hindering water uptake, and limiting the bioavailability of other essential micronutrients. Pinus massoniana (masson pine), globally recognized as a reforestation plant, is resistant to stress conditions including biotic and abiotic stresses. This resistance is linked to the symbiotic relationship with diverse ectomycorrhizal fungal species. In the present study, we investigated the genetic regulators as expressed proteins, conferring a symbiotic relationship between Al-stress resistance and Suillus luteus in masson pine. Multi-treatment trials resulted in the identification of 12 core Al-stress responsive proteins conserved between Al stress conditions with or without S. luteus inoculation. These proteins are involved in chaperonin CPN60-2, protein refolding and ATP-binding, Cu-Zn-superoxide dismutase precursor, oxidation-reduction process, and metal ion binding, phosphoglycerate kinase 1, glycolytic process, and metabolic process. Furthermore, 198 Al responsive proteins were identified specifically under S. luteus-inoculation and are involved in gene regulation, metabolic process, oxidation-reduction process, hydrolase activity, and peptide activity. Chlorophyll a-b binding protein, endoglucanase, putative spermidine synthase, NADH dehydrogenase, and glutathione-S-transferase were found with a significant positive expression under a combined Al and S. luteus treatment, further supported by the up-regulation of their corresponding genes. This study provides a theoretical foundation for exploiting the regulatory role of ectomycorrhizal inoculation and associated genetic changes in resistance against Al stress in masson pine
    corecore