124 research outputs found
On the Usability of Probably Approximately Correct Implication Bases
We revisit the notion of probably approximately correct implication bases
from the literature and present a first formulation in the language of formal
concept analysis, with the goal to investigate whether such bases represent a
suitable substitute for exact implication bases in practical use-cases. To this
end, we quantitatively examine the behavior of probably approximately correct
implication bases on artificial and real-world data sets and compare their
precision and recall with respect to their corresponding exact implication
bases. Using a small example, we also provide qualitative insight that
implications from probably approximately correct bases can still represent
meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph
Climbing: A Unified Approach for Global Constraints on Hierarchical Segmentation
International audienceThe paper deals with global constraints for hierarchical segmentations. The proposed framework associates, with an input image, a hierarchy of segmentations and an energy, and the subsequent optimization problem. It is the first paper that compiles the different global constraints and unifies them as Climbing energies. The transition from global optimization to local optimization is attained by the h-increasingness property, which allows to compare parent and child partition energies in hierarchies. The laws of composition of such energies are established and examples are given over the Berkeley Dataset for colour and texture segmentation
Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules
Association rules are among the most widely employed data analysis methods in
the field of Data Mining. An association rule is a form of partial implication
between two sets of binary variables. In the most common approach, association
rules are parameterized by a lower bound on their confidence, which is the
empirical conditional probability of their consequent given the antecedent,
and/or by some other parameter bounds such as "support" or deviation from
independence. We study here notions of redundancy among association rules from
a fundamental perspective. We see each transaction in a dataset as an
interpretation (or model) in the propositional logic sense, and consider
existing notions of redundancy, that is, of logical entailment, among
association rules, of the form "any dataset in which this first rule holds must
obey also that second rule, therefore the second is redundant". We discuss
several existing alternative definitions of redundancy between association
rules and provide new characterizations and relationships among them. We show
that the main alternatives we discuss correspond actually to just two variants,
which differ in the treatment of full-confidence implications. For each of
these two notions of redundancy, we provide a sound and complete deduction
calculus, and we show how to construct complete bases (that is,
axiomatizations) of absolutely minimum size in terms of the number of rules. We
explore finally an approach to redundancy with respect to several association
rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape
Towards a Soft Evaluation and Refinement of Tagging in Digital Humanities
In this paper we estimate the soundness of tagging in digital repositories
within the field of Digital Humanities by studying the (semantic) conceptual structure
behind the folksnonomy. The use of association rules associated to this conceptual
structure (Stem and Luxenburger basis) allows to faithfully (from a semantic
point of view) complete the tagging (or suggest such a completion).Ministerio de Economía y Competitividad TIN2013-41086-PJunta de Andalucía TIC-606
On the equivalence between hierarchical segmentations and ultrametric watersheds
We study hierarchical segmentation in the framework of edge-weighted graphs.
We define ultrametric watersheds as topological watersheds null on the minima.
We prove that there exists a bijection between the set of ultrametric
watersheds and the set of hierarchical segmentations. We end this paper by
showing how to use the proposed framework in practice in the example of
constrained connectivity; in particular it allows to compute such a hierarchy
following a classical watershed-based morphological scheme, which provides an
efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum
On morphological hierarchical representations for image processing and spatial data clustering
Hierarchical data representations in the context of classi cation and data
clustering were put forward during the fties. Recently, hierarchical image
representations have gained renewed interest for segmentation purposes. In this
paper, we briefly survey fundamental results on hierarchical clustering and
then detail recent paradigms developed for the hierarchical representation of
images in the framework of mathematical morphology: constrained connectivity
and ultrametric watersheds. Constrained connectivity can be viewed as a way to
constrain an initial hierarchy in such a way that a set of desired constraints
are satis ed. The framework of ultrametric watersheds provides a generic scheme
for computing any hierarchical connected clustering, in particular when such a
hierarchy is constrained. The suitability of this framework for solving
practical problems is illustrated with applications in remote sensing
A study of observation scales based on Felzenswalb-Huttenlocher dissimilarity measure for hierarchical segmentation
International audienceHierarchical image segmentation provides a region-oriented scale-space, i.e., a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. Guimarães et al. proposed a hierarchical graph based image segmentation (HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity. This HGB method computes, for each edge of a graph, the minimum scale in a hierarchy at which two regions linked by this edge should merge according to the dissimilarity. In order to generalize this method, we first propose an algorithm to compute the intervals which contain all the observation scales at which the associated regions should merge. Then, following the current trend in mathematical morphology to study criteria which are not increasing on a hierarchy, we present various strategies to select a significant observation scale in these intervals. We use the BSDS dataset to assess our observation scale selection methods. The experiments show that some of these strategies lead to better segmentation results than the ones obtained with the original HGB method
Constructive links between some morphological hierarchies on edge-weighted graphs
International audienceIn edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies
Synthetizing Qualitative (Logical) Patterns for Pedestrian Simulation from Data
This work introduces a (qualitative) data-driven framework
to extract patterns of pedestrian behaviour and synthesize Agent-Based
Models. The idea consists in obtaining a rule-based model of pedestrian
behaviour by means of automated methods from data mining. In order to
extract qualitative rules from data, a mathematical theory called Formal
Concept Analysis (FCA) is used. FCA also provides tools for implicational
reasoning, which facilitates the design of qualitative simulations
from both, observations and other models of pedestrian mobility. The
robustness of the method on a general agent-based setting of movable
agents within a grid is shown.Ministerio de Economía y Competitividad TIN2013-41086-
- …