7 research outputs found
Aufbau eines pharma-/toxikologischen Testsystems fĂŒr die SĂ€uger-KaliumkanĂ€le <em>mKir2.1</em> und hERG mit Hilfe des Modellorganismus <i>Saccharomyces cerevisiae</i>
Die humanen KaliumkanĂ€le hERG und Kir2.1 tragen wesentlich zur Repolarisierung des kardialen Membranpotentials bei (Sanguinetti et al., 1995; Wible et al., 1995). Fehlfunktionen in diesen KanĂ€len können zu einer Verzögerung der kardialen Repolarisation, einer VerlĂ€ngerung des QT-Intervalls im OberflĂ€chen-EKG und zu lebensbedrohlichen Herzrhythmusstörungen fĂŒhren (Tristani-Firouzi et al., 2002; Sanguinetti & Tristani-Firouzi, 2006). Ziel der Arbeit war die Charakterisierung von hERG und dem zum humanen Kir2.1-Protein orthologen Kir2.1-Protein aus der Maus in Saccharomyces cerevisiae K+-Transportmutanten. Die funktionelle Expression von chromosomal als auch episomal exprimierter mKir2.1-cDNA komplementierte den mutanten WachstumsphĂ€notyp unter nicht permissiven Bedingungen (3-10 mM KCl) in AbhĂ€ngigkeit vom externen pH. GFP-mKir2.1 Fusionsproteine konnten in der Plasmamembran oder zumindest in unmittelbarer NĂ€he zu dieser lokalisiert werden. Unter nicht permissiven (20 mM KCl) wie auch permissiven Bedingungen (100 mM KCl) zeigten mKir2.1 exprimierende Zellen, verglichen mit einem Kontrollstamm ohne mKir2.1, eine deutlich verringerte SensitivitĂ€t gegenĂŒber dem als Indikator fĂŒr das Membranpotential beschriebenen Antibiotikum Hygromycin B, was auf eine Membrandepolarisierung mit funktionellem mKir2.1 hindeutet. Die Untersuchung des Wachstums von mKir2.1 exprimierenden StĂ€mmen bei Zugabe der bekannten Blocker von Kir2.1 Ag+, Cs+, Ba2+ und 48F10 zeigte unter K+-limitierenden Bedingungen eine signifikante Inhibierung von mKir2.1 spezifischem Wachstum. Im Zuge der Entwicklung eines standardisierten Testsystems zur Durchmusterung von potentiellen Modulatoren von Kir2.1 wurde in einem Ringtest die Ăbertragbarkeit dieser Wachstumstests auf andere Labore am Beispiel eines standardisierten CsCl-Test untersucht und bestĂ€tigt. Unter permissiven Bedingungen (â„ 50 mM KCl) und pH 7 fĂŒhrte darĂŒber hinaus die Expression von mKir2.1 zu einer signifikanten Wachstumsinhibierung und damit zu einem weiteren mKir2.1 spezifischen PhĂ€notyp. Diese Wachstumsinhibierung konnte durch Zugabe von CsCl und in K+-Effluxmutanten durch Zugabe von BaCl2 aufgehoben werden. Damit konnte fĂŒr diesen K+-Kanal die funktionelle heterologe Expression gezeigt werden und es wurden zwei neue, bisher nicht beschriebene PhĂ€notypen identifiziert. Mit den konstruierten HefestĂ€mmen steht ein pharma-/toxikologisches Testsystem zur VerfĂŒgung, fĂŒr das die SensitivitĂ€t, SpezifitĂ€t und der Vergleich mit dem âGold Standardâ unter standardisierten Bedingungen gezeigt werden konnte. Die Expression von HERG-cDNA fĂŒhrte in S. cerevisiae K+-Aufnahmemutanten zu keiner Komplementation des mutanten WachstumsphĂ€notyps. Bei der Expression von Fusionskonstrukten aus GFP und HERG konnte keine Lokalisation an der ZelloberflĂ€che beobachtet werden. Auch die Konstruktion verschiedener HERG-Modifikationen im Sinne eines verbesserten Membran- âTargetingâ und/oder verbessertem ER-Exports konnten keine Lokalisierung in oder in der NĂ€he der Plasmamembran sowie keine erfolgreiche Komplementation bewirken
grofit: Fitting Biological Growth Curves with R
The grofit package was developed to fit many growth curves obtained under different conditions in order to derive a conclusive dose-response curve, for instance for a compound that potentially affects growth. grofit fits data to different parametric models and in addition provides a model free spline method to circumvent systematic errors that might occur within application of parametric methods. This amendment increases the reliability of the characteristic parameters (e.g.,lag phase, maximal growth rate, stationary phase) derived from a single growth curve. By relating obtained parameters to the respective condition (e.g.,concentration of a compound) a dose response curve can be derived that enables the calculation of descriptive pharma-/toxicological values like half maximum effective concentration (EC50). Bootstrap and cross-validation techniques are used for estimating confidence intervals of all derived parameters.
Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics
AbstractPotassium uptake defective Saccharomyces cerevisiae strains (Îtrk1,2 and Îtrk1,2 Îtok1) were used for the phenotypic analysis of the mouse inward rectifying Kir2.1 channel by growth analysis. Functional expression of both, multi-copy plasmid and chromosomally expressed GFP-mKir2.1 fusion constructs complemented the potassium uptake deficient phenotype in a pHout dependent manner. Upon application of Hygromycin B to chromosomally mKir2.1 expressing cells, significantly lower toxin sensitivity (EC50 15.4ÎŒM) compared to Îtrk1,2 Îtok1 cells (EC50 2.6ÎŒM) was observed. Growth determination of mKir2.1 expressing strains upon application of Ag+, Cs+ and Ba2+ as known blockers of mKir2.1 channels revealed significantly decreased channel function. Cells with mKir2.1 were about double sensitive to AgNO3, 350-fold more sensitive to CsCl and 1500-fold more sensitive to BaCl2 in comparison to the respective controls indicating functional expression and correct pharmacology
Association of serum sex steroid receptor bioactivity and sex steroid hormones with breast cancer risk in postmenopausal women
Postmenopausal women with elevated serum sex steroids have an increased risk of breast cancer. Most of this risk is believed to be exerted through binding of the sex steroids to their receptors. For the first time, we investigate the association of estrogen receptor (ER) and androgen receptor (AR) serum bioactivity (SB) in addition to hormone levels in samples from women with breast cancer collected before diagnosis. Two hundred postmenopausal women participating in the UK Collaborative Trial of Ovarian Cancer Screening who developed ER-positive breast cancer 0.6â5 years after sample donation were identified and matched to 400 controls. ER and AR bioassays were used to measure ERα, ERÎČ, and AR SB. Androgen and estrogen levels were measured with immunoassays. Subjects were classified according to quintiles of the respective marker among controls and the associations between SB and hormones with breast cancer risk were determined by logistic regression analysis. ERα and ERÎČ SB were significantly higher before diagnosis compared with controls, while estrogens showed no difference. Women had a twofold increased breast cancer risk if ERα SB (odds ratio (OR), 2.114; 95% confidence interval (CI), 1.050â4.425; P=0.040) was in the top quintile >2 years before diagnosis or estrone (OR, 2.205; 95% CI, 1.104â4.586; P=0.029) was in the top quintile <2 years before diagnosis. AR showed no significant association with breast cancer while androstenedione (OR, 3.187; 95% CI, 1.738â6.044; P=0.0003) and testosterone (OR, 2.145; 95% CI, 1.256â3.712; P=0.006) were significantly higher compared with controls and showed a strong association with an almost threefold increased breast cancer risk independent of time to diagnosis. This study provides further evidence on the association of androgens and estrogens with breast cancer. In addition, it reports that high ER but not AR SB is associated with increased breast risk >2 years before diagnosis
grofit: Fitting Biological Growth Curves with R
The following description of the package grofit was also published as Kahm et al. (2010). The grofit package was developed to fit many growth curves obtained under different conditions in order to derive a conclusive dose-response curve, for instance for a compound that potentially affects growth. grofit fits data to different parametric models and in addition provides a model free spline method to circumvent systematic errors that might occur within application of parametric methods. This amendment increases the reliability of the characteristic parameters (e.g.,lag phase, maximal growth rate, stationary phase) derived from a single growth curve. By relating obtained parameters to the respective condition (e.g.,concentration of a compound) a dose response curve can be derived that enables the calculation of descriptive pharma-/toxicological values like half maximum effective concentration (EC50). Bootstrap and cross-validation techniques are used for estimating confidence intervals of all derived parameters