2 research outputs found

    Evolutionary Monte Carlo of QM Properties in Chemical Space: Electrolyte Design

    No full text
    Optimizing a target function over the space of organic molecules is an important problem appearing in many fields of applied science but also a very difficult one due to the vast number of possible molecular systems. We propose an evolutionary Monte Carlo algorithm for solving such problems which is capable of straightforwardly tuning both exploration and exploitation characteristics of an optimization procedure while retaining favorable properties of genetic algorithms. The method, dubbed MOSAiCS (Metropolis Optimization by Sampling Adaptively in Chemical Space), is tested on problems related to optimizing components of battery electrolytes, namely, minimizing solvation energy in water or maximizing dipole moment while enforcing a lower bound on the HOMO–LUMO gap; optimization was carried out over sets of molecular graphs inspired by QM9 and Electrolyte Genome Project (EGP) data sets. MOSAiCS reliably generated molecular candidates with good target quantity values, which were in most cases better than the ones found in QM9 or EGP. While the optimization results presented in this work sometimes required up to 106 QM calculations and were thus feasible only thanks to computationally efficient ab initio approximations of properties of interest, we discuss possible strategies for accelerating MOSAiCS using machine learning approaches

    Dynamic Stabilization of Metal Oxide–Water Interfaces

    No full text
    The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe<sub>2</sub>O<sub>3</sub>) as a model oxide, we show through a direct comparison of <i>in situ</i> synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (11̅02) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locations and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface p<i>K</i><sub>a</sub> prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces
    corecore