7 research outputs found

    Experimental evidence of planar channeling in a periodically bent crystal

    Get PDF
    The usage of a crystalline undulator (CU) has been identified as a promising solution for generating powerful and monochromatic γ -rays. A CU was fabricated at Sensors and Semiconductors Lab (SSL) through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities

    Steering efficiency of a ultrarelativistic proton beam in a thin bent crystal

    Get PDF
    Crystals with small thickness along the beam exhibit top performance for steering particle beams through planar channeling. For such crystals, the effect of nuclear dechanneling plays an important role because it affects their efficiency. We addressed the problem through experimental work carried out with 400 GeV/c protons at fixed-target facilities of CERN-SPS. The dependence of efficiency vs. curvature radius has been investigated and compared favourably to the results of modeling. A realistic estimate of the performance of a crystal designed for LHC energy including nuclear dechanneling has been achieved

    A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4

    Get PDF
    A model for the simulation of orientational effects in straight and bent periodic atomic structures is presented. The continuum potential approximation has been adopted. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code has been validated against data from channeling experiments carried out at CERN

    Observation of strong leakage reduction in crystal assisted collimation of the SPS beam

    Get PDF
    In ideal two-stage collimation systems, the secondary collimator–absorber should have its length sufficient to exclude practically the exit of halo particles with large impact parameters. In the UA9 experiments on the crystal assisted collimation of the SPS beam a 60 cm long tungsten bar is used as a secondary collimator–absorber which is insufficient for the full absorption of the halo protons. Multi-turn simulation studies of the collimation allowed to select the position for the beam loss monitor downstream the collimation area where the contribution of particles deflected by the crystal in channeling regime but emerging from the secondary collimator–absorber is considerably reduced. This allowed observation of a strong leakage reduction of halo protons from the SPS beam collimation area, thereby approaching the case with an ideal absorber

    Observation of focusing of 400 GeV/ c proton beam with the help of bent crystals

    Get PDF
    The results of observation and studies of focusing of 400 GeV/ c proton beam with the help of bent single crystals are presented. Two silicon crystals have been used in the measurements. The focal length of the first and second crystals is found to be 1.48 m and 0.68 m, respectively. The mean square size of the horizontal profile in the focus was 3.1 and 4.3 times as small as at the exit of the crystals

    Corrigendum to “Observation of strong leakage reduction in crystal assisted collimation of the SPS beam” [Phys. Lett. B 748 (2015) 451–454]

    Get PDF

    Corrigendum to: Observation of focusing of 400 GeV/ c proton beam with the help of bent crystals [Phys. Lett. B 733 (2014) 366–372]

    Get PDF
    corecore