6,542 research outputs found

    High precision Monte Carlo study of the 3D XY-universality class

    Full text link
    We present a Monte Carlo study of the two-component ϕ4\phi^4 model on the simple cubic lattice in three dimensions. By suitable tuning of the coupling constant λ\lambda we eliminate leading order corrections to scaling. High statistics simulations using finite size scaling techniques yield ν=0.6723(3)[8]\nu=0.6723(3)[8] and η=0.0381(2)[2]\eta=0.0381(2)[2], where the statistical and systematical errors are given in the first and second bracket, respectively. These results are more precise than any previous theoretical estimate of the critical exponents for the 3D XY universality class.Comment: 13 page

    Optimized Perturbation Theory for Wave Functions of Quantum Systems

    Full text link
    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings.Comment: 11 pages, RevTeX, three ps figure

    New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions

    Full text link
    We propose a new algorithm of the finite lattice method to generate the high-temperature series for the Ising model in three dimensions. It enables us to extend the series for the free energy of the simple cubic lattice from the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate of the critical exponent for the specific heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Quantum Dynamics of the Slow Rollover Transition in the Linear Delta Expansion

    Full text link
    We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which is an important feature of inflationary models of the early universe. The method, which goes beyond the Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods. It provides a promising basis for extension to a full field theoretic treatment.Comment: 12 pages, including 4 figure

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape

    Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0

    Full text link
    We simulate self-avoiding walks on a cubic lattice and determine the second virial coefficient for walks of different lengths. This allows us to determine the critical value of the renormalized four-point coupling constant in the three-dimensional N-vector universality class for N=0. We obtain g* = 1.4005(5), where g is normalized so that the three-dimensional field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As a byproduct, we also obtain precise estimates of the interpenetration ratio Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page

    Calcium and Zinc Ion Release from Polyalkenoate Cements Formed from Zinc Oxide/apatite Mixtures

    Get PDF
    Calcium and zinc ion release from hydroxyapatite-zinc oxide-poly (acrylic acid) (HAZnO-PAA) composite cements into deionised water was investigated as a function of HA content, PAA concentration, PAA molecular weight and maturation time. At any given maturation time, zinc ion release was constant until the HA content was at the maximum loading (60 wt%) resulting in the cement matrix breaking up, allowing exacerbated ion release. The calcium ion release increased with increased HA content in the composite until the maximum loading where the release drops off. Up to this point, the release of both ionic species was proportional to square root time for the initial 24-hour period, indicating that the release is diffusion controlled. In agreement with related data from conventional Glass Polyalkenoate Cements (GPCs), it is the concentration of the PAA, not the molecular weight, that influences ion release from these materials. However, unlike GPCs, the release of the active ions results in a pH rise in the deionised water, more conventionally seen with Bioglass® and related bioactive glasses. It is this pH rise, caused by the ion exchange of Zn2+ and Ca2+ for H+ from the water, leaving an excess of OH-, that should result in a favourable bioactive response both in vitro and in-vivo. © Springer Science + Business Media, LLC 2006

    Time Uncertainty in Quantum Gravitational Systems

    Get PDF
    It is generally argued that the combined effect of Heisenberg principle and general relativity leads to a minimum time uncertainty. Most of the analyses supporting this conclusion are based on a perturbative approach to quantization. We consider a simple family of gravitational models, including the Einstein-Rosen waves, in which the (non-linearized) inclusion of gravity changes the normalization of time translations by a monotonic energy-dependent factor. In these circumstances, it is shown that a maximum time resolution emerges non-perturbatively only if the total energy is bounded. Perturbatively, however, there always exists a minimum uncertainty in the physical time.Comment: (4 pages, no figures) Accepted for publication in Physical Review

    The correction-to-scaling exponent in dilute systems

    Full text link
    The leading correction-to-scaling exponent ω\omega for the three-dimensional dilute Ising model is calculated in the framework of the field theoretic renormalization group approach. Both in the minimal subtraction scheme as well as in the massive field theory (resummed four loop expansion) excellent agreement with recent Monte Carlo calculations [Ballesteros H G, et al Phys. Rev. B 58, 2740 (1998)] is achieved. The expression of ω\omega as series in a ϵ\sqrt{\epsilon}-expansion up to O(ϵ2){\cal O}(\epsilon^2) does not allow a reliable estimate for d=3d=3.Comment: 4 pages, latex, 1 eps-figure include
    • …
    corecore