35 research outputs found

    Efficient allelic-drive in Drosophila.

    Get PDF
    Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox

    Cas9/Nickase-induced allelic Conversion By Homologous Chromosome-Templated Repair in

    Get PDF
    Repair of double-strand breaks (DSBs) in somatic cells is primarily accomplished by error-prone nonhomologous end joining and less frequently by precise homology-directed repair preferentially using the sister chromatid as a template. Here,

    Efficient allelic-drive in Drosophila.

    No full text

    Deconstructing host-pathogen interactions in Drosophila

    No full text
    Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host

    Brother of rhomboid, a rhomboid related gene expressed during early Drosophila oogenesis, promotes EGF-R/MAPK signaling

    Get PDF
    AbstractThe Drosophila rhomboid (rho) gene participates in localized activation of EGF-receptor signaling in various developmental settings. The Rhomboid protein has been proposed to promote presentation and/or processing of the membrane-bound Spitz (mSpi) EGF-related ligand to generate an active diffusible form of the ligand. Here, we report on a new rhomboid-related gene identified by sequence similarity searching that we have named brother of rhomboid (brho). In contrast to rho, which is expressed in complex patterns during many stages of development, brho appears to be expressed only during oogenesis. brho transcripts are present in early oocytes and abut posterior follicle cells which exhibit high levels of MAPK activation. brho, like rho, collaborates with Star to promote signaling through the EGF-R/MAPK pathway, and genetic evidence indicates that Brho can activate both the mSpi and the Grk precursor EGF ligands in the wing. We propose that endogenous brho may activate the oocyte-specific Gurken ligand and thereby participate in defining posterior cell fates in the early follicular epithelium

    tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9

    No full text
    Abstract CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14–15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression
    corecore