338 research outputs found
Quantum Permutation Synchronization
We present QuantumSync, the first quantum algorithm for solving a synchronization problem in the context of computer vision. In particular, we focus on permutation synchronization which involves solving a non-convex optimization problem in discrete variables. We start by formulating synchronization into a quadratic unconstrained binary optimization problem (QUBO). While such formulation respects the binary nature of the problem, ensuring that the result is a set of permutations requires extra care. Hence, we: (i) show how to insert permutation constraints into a QUBO problem and (ii) solve the constrained QUBO problem on the current generation of the adiabatic quantum computers D-Wave. Thanks to the quantum annealing, we guarantee global optimality with high probability while sampling the energy landscape to yield confidence estimates. Our proof-of-concepts realization on the adiabatic D-Wave computer demonstrates that quantum machines offer a promising way to solve the prevalent yet difficult synchronization problems
The floodlight problem
Given three angles summing to 2, given n points in the plane and a tripartition k1 + k2 + k3 = n, we can tripartition the plane into three wedges of the given angles so that the i-th wedge contains ki of the points. This new result on dissecting point sets is used to prove that lights of specied angles not exceeding can be placed at n xed points in the plane to illuminate the entire plane if and only if the angles sum to at least 2. We give O(n log n) algorithms for both these problems
Unsupervised Texture Transfer from Images to Model Collections
Large 3D model repositories of common objects are now ubiquitous and are increasingly being used in computer graphics and computer vision for both analysis and synthesis tasks. However, images of objects in the real world have a richness of appearance that these repositories do not capture, largely because most existing 3D models are untextured. In this work we develop an automated pipeline capable of transporting texture information from images of real objects to 3D models of similar objects. This is a challenging problem, as an object's texture as seen in a photograph is distorted by many factors, including pose, geometry, and illumination. These geometric and photometric distortions must be undone in order to transfer the pure underlying texture to a new object --- the 3D model. Instead of using problematic dense correspondences, we factorize the problem into the reconstruction of a set of base textures (materials) and an illumination model for the object in the image. By exploiting the geometry of the similar 3D model, we reconstruct certain reliable texture regions and correct for the illumination, from which a full texture map can be recovered and applied to the model. Our method allows for large-scale unsupervised production of richly textured 3D models directly from image data, providing high quality virtual objects for 3D scene design or photo editing applications, as well as a wealth of data for training machine learning algorithms for various inference tasks in graphics and vision
String Matching and 1d Lattice Gases
We calculate the probability distributions for the number of occurrences
of a given letter word in a random string of letters. Analytical
expressions for the distribution are known for the asymptotic regimes (i) (Gaussian) and such that is finite
(Compound Poisson). However, it is known that these distributions do now work
well in the intermediate regime . We show that the
problem of calculating the string matching probability can be cast into a
determining the configurational partition function of a 1d lattice gas with
interacting particles so that the matching probability becomes the
grand-partition sum of the lattice gas, with the number of particles
corresponding to the number of matches. We perform a virial expansion of the
effective equation of state and obtain the probability distribution. Our result
reproduces the behavior of the distribution in all regimes. We are also able to
show analytically how the limiting distributions arise. Our analysis builds on
the fact that the effective interactions between the particles consist of a
relatively strong core of size , the word length, followed by a weak,
exponentially decaying tail. We find that the asymptotic regimes correspond to
the case where the tail of the interactions can be neglected, while in the
intermediate regime they need to be kept in the analysis. Our results are
readily generalized to the case where the random strings are generated by more
complicated stochastic processes such as a non-uniform letter probability
distribution or Markov chains. We show that in these cases the tails of the
effective interactions can be made even more dominant rendering thus the
asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The
lattice gas analogy has been worked out in full, including virial expansion
and equation of state. This constitutes the main part of the paper now.
Connections with existing work is made and references should be up to date
now. To be submitted for publicatio
SketchGen: Generating Constrained CAD Sketches
Computer-aided design (CAD) is the most widely used modeling approach for technical design. The typical starting point in these designs is 2D sketches which can later be extruded and combined to obtain complex three-dimensional assemblies. Such sketches are typically composed of parametric primitives, such as points, lines, and circular arcs, augmented with geometric constraints linking the primitives, such as coincidence, parallelism, or orthogonality. Sketches can be represented as graphs, with the primitives as nodes and the constraints as edges. Training a model to automatically generate CAD sketches can enable several novel workflows, but is challenging due to the complexity of the graphs and the heterogeneity of the primitives and constraints. In particular, each type of primitive and constraint may require a record of different size and parameter types. We propose SketchGen as a generative model based on a transformer architecture to address the heterogeneity problem by carefully designing a sequential language for the primitives and constraints that allows distinguishing between different primitive or constraint types and their parameters, while encouraging our model to re-use information across related parameters, encoding shared structure. A particular highlight of our work is the ability to produce primitives linked via constraints that enables the final output to be further regularized via a constraint solver. We evaluate our model by demonstrating constraint prediction for given sets of primitives and full sketch generation from scratch, showing that our approach significantly out performs the state-of-the-art in CAD sketch generation
Towards precise completion of deformable shapes
According to Aristotle, âthe whole is greater than the sum of its partsâ. This statement was adopted to explain human perception by the Gestalt psychology school of thought in the twentieth century. Here, we claim that when observing a part of an object which was previously acquired as a whole, one could deal with both partial correspondence and shape completion in a holistic manner. More specifically, given the geometry of a full, articulated object in a given pose, as well as a partial scan of the same object in a different pose, we address the new problem of matching the part to the whole while simultaneously reconstructing the new pose from its partial observation. Our approach is data-driven and takes the form of a Siamese autoencoder without the requirement of a consistent vertex labeling at inference time; as such, it can be used on unorganized point clouds as well as on triangle meshes. We demonstrate the practical effectiveness of our model in the applications of single-view deformable shape completion and dense shape correspondence, both on synthetic and real-world geometric data, where we outperform prior work by a large margin
Searching edges in the overlap of two plane graphs
Consider a pair of plane straight-line graphs, whose edges are colored red
and blue, respectively, and let n be the total complexity of both graphs. We
present a O(n log n)-time O(n)-space technique to preprocess such pair of
graphs, that enables efficient searches among the red-blue intersections along
edges of one of the graphs. Our technique has a number of applications to
geometric problems. This includes: (1) a solution to the batched red-blue
search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an
algorithm to compute the maximum vertical distance between a pair of 3D
polyhedral terrains one of which is convex in O(n log n) time, where n is the
total complexity of both terrains; (3) an algorithm to construct the Hausdorff
Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n)
time and O(n+m) space, where n is the total number of points in all clusters
and m is the number of crossings between all clusters; (4) an algorithm to
construct the farthest-color Voronoi diagram of the corners of n axis-aligned
rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle
problem for n parallel line segments in the plane in optimal O(n log n) time.
All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure
On reconfiguration of disks in the plane and related problems
We revisit two natural reconfiguration models for systems of disjoint objects in the plane: translation and sliding. Consider a set of n pairwise interior-disjoint objects in the plane that need to be brought from a given start (initial) configuration S into a desired goal (target) configuration T, without causing collisions. In the translation model, in one move an object is translated along a fixed direction to another position in the plane. In the sliding model, one move is sliding an object to another location in the plane by means of an arbitrarily complex continuous motion (that could involve rotations). We obtain various combinatorial and computational results for these two models: (I) For systems of n congruent disks in the translation model, Abellanas et al. showed that 2n â 1 moves always suffice and â8n/5 â moves are sometimes necessary for transforming the start configuration into the target configuration. Here we further improve the lower bound to â5n/3 â â 1, and thereby give a partial answer to one of their open problems. (II) We show that the reconfiguration problem with congruent disks in the translation model is NPhard, in both the labeled and unlabeled variants. This answers another open problem of Abellanas et al. (III) We also show that the reconfiguration problem with congruent disks in the sliding model is NP-hard, in both the labeled and unlabeled variants. (IV) For the reconfiguration with translations of n arbitrary convex bodies in the plane, 2n moves are always sufficient and sometimes necessary
Most vital segment barriers
We study continuous analogues of "vitality" for discrete network flows/paths,
and consider problems related to placing segment barriers that have highest
impact on a flow/path in a polygonal domain. This extends the graph-theoretic
notion of "most vital arcs" for flows/paths to geometric environments. We give
hardness results and efficient algorithms for various versions of the problem,
(almost) completely separating hard and polynomially-solvable cases
- âŠ