3,762 research outputs found

    Spin-orbit-coupling-induced phase separation in trapped Bose gases

    Full text link
    In a trapped spin-1/2 Bose-Einstein condensate with miscible interactions, a two-dimensional spin-orbit coupling can introduce an unconventional spatial separation between the two components. We reveal the physical mechanism of such a spin-orbit-coupling-induced phase separation. Detailed features of the phase separation are identified in a trapped Bose-Einstein condensate. We further analyze differences of phase separation in Rashba and anisotropic spin-orbit-coupled Bose gases. An adiabatic splitting dynamics is proposed as an application of the phase separation.Comment: 10 pages, 7 figure

    Systematic investigation of the rotational bands in nuclei with Z≈100Z \approx 100 using a particle-number conserving method based on a cranked shell model

    Full text link
    The rotational bands in nuclei with Z≈100Z \approx 100 are investigated systematically by using a cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (Îș\kappa and ÎŒ\mu) and deformation parameters (Δ2\varepsilon_2 and Δ4\varepsilon_4) are proposed. The experimental kinematic moments of inertia for the rotational bands in even-even, odd-AA and odd-odd nuclei, and the bandhead energies of the 1-quasiparticle bands in odd-AA nuclei, are reproduced quite well by the PNC-CSM calculations. By analyzing the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the angular momentum alignment, the upbending mechanism in this region is understood clearly.Comment: 21 pages, 24 figures, extended version of arXiv: 1101.3607 (Phys. Rev. C83, 011304R); added refs.; added Fig. 4 and discussions; Phys. Rev. C, in pres

    Research Progress on Formaldehyde‐Free Wood Adhesive Derived from Soy Flour

    Get PDF
    Soy‐based adhesives have been regarded as the most suitable candidates for wood industry. For a widespread use of soy‐based adhesives, new technologies need to be developed to improve the water resistance. An overview on the methods to improve water resistance of soy‐based adhesives is presented. Denaturants were once considered necessary to modify soy protein. However, water‐resistant soy adhesives could be prepared by simply removing water‐soluble carbohydrates and low molecular peptides from soy flour. In addition, proper grafting and cross‐linking agents help to prepare water‐resistant soy‐based adhesives, which are used widely to bond interior wood composites. In particular, a new type of polyamidoamine (PADA) resin and an itaconic acid‐based polyamidoamine‐epichlorohydrin (IA‐PAE) resin were synthesized to perform as cross‐linking agents for soy‐based adhesives. This review concludes that soy‐based adhesives have great potential for use in numerous applications. However, future work is still needed to make soy‐based adhesives more competitive with synthetic adhesives

    Stochastic mathematical programs with hybrid equilibrium constraints

    Get PDF
    AbstractThis paper considers a stochastic mathematical program with hybrid equilibrium constraints (SMPHEC), which includes either “here-and-now” or “wait-and-see” type complementarity constraints. An example is given to describe the necessity to study SMPHEC. In order to solve the problem, the sampling average approximation techniques are employed to approximate the expectations and smoothing and penalty techniques are used to deal with the complementarity constraints. Limiting behaviors of the proposed approach are discussed. Preliminary numerical experiments show that the proposed approach is applicable

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure

    A novel approach for bilevel programs based on Wolfe duality

    Full text link
    This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be reformulated as a mathematical program with equilibrium constraints (MPEC for short). However, since the MPEC does not satisfy the Mangasarian-Fromovitz constraint qualification at any feasible point, the well-developed nonlinear programming theory cannot be applied to MPECs directly. In this paper, we apply the Wolfe duality to show that, under very mild conditions, the bilevel program is equivalent to a new single-level reformulation (WDP for short) in the globally and locally optimal sense. We give an example to show that, unlike the MPEC reformulation, WDP may satisfy the Mangasarian-Fromovitz constraint qualification at its feasible points. We give some properties of the WDP reformulation and the relations between the WDP and MPEC reformulations. We further propose a relaxation method for solving WDP and investigate its limiting behavior. Comprehensive numerical experiments indicate that, although solving WDP directly does not perform very well in our tests, the relaxation method based on the WDP reformulation is quite efficient

    Rotation and alignment of high-jj orbitals in transfermium nuclei

    Full text link
    The structure of nuclei with Z∌100Z\sim100 is investigated systematically by the Cranked Shell Model (CSM) with pairing correlations treated by a Particle-Number Conserving (PNC) method. In the PNC method, the particle number is conserved and the Pauli blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (Îș\kappa and ÎŒ\mu) is proposed. The experimental kinematic moments of inertia and the band-head energies are reproduced quite well by the PNC-CSM calculations. The band crossing, the effects of high-jj intruder orbitals and deformation are discussed in detail.Comment: To appear in the Proceedings of the International Nuclear Physics Conference (INPC2013), June 2-7, 2013, Florence, Ital
    • 

    corecore