
Journal of Computational and Applied Mathematics 235 (2011) 3870–3882

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Stochastic mathematical programs with hybrid equilibrium constraints✩

Yong-Chao Liu, Jin Zhang, Gui-Hua Lin ∗

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

a r t i c l e i n f o

MSC:
90C30
90C33

Keywords:
Stochastic mathematical program with
hybrid equilibrium constraints

Sampling average approximation
NCP function
Convergence

a b s t r a c t

This paper considers a stochastic mathematical program with hybrid equilibrium con-
straints (SMPHEC), which includes either ‘‘here-and-now’’ or ‘‘wait-and-see’’ type comple-
mentarity constraints. An example is given to describe the necessity to study SMPHEC. In
order to solve the problem, the sampling average approximation techniques are employed
to approximate the expectations and smoothing and penalty techniques are used to deal
with the complementarity constraints. Limiting behaviors of the proposed approach are
discussed. Preliminary numerical experiments show that the proposed approach is appli-
cable.
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1. Introduction

Mathematical program with equilibrium constraints (MPEC) is an optimization problem whose constraints include
complementarity or variational inequality system. MPEC plays a very important role in many fields such as engineering
design, economic equilibrium, transportation science and game theory. See [1–3] for more details about the MPEC theory,
algorithms, and applications.

Since some elements may involve uncertain data in many practical problems, the stochastic MPEC (SMPEC) has drawn
much attention in the recent literature; see the survey paper [4] and the references therein. There have been proposed two
kinds of SMPECs in the literature: one is called a ‘‘here-and-now’’ model, in which both the upper-level decision and the
lower-level decision are required to bemade before a random event is observed. The other is called a ‘‘lower-level wait-and-
see’’ model, in which the upper-level decision is made at once and the lower-level decision may be made after a random
event is observed. See [5–16] for details about the recent developments in the here-and-now model and the lower-level
wait-and-see model, respectively.

In this paper, we consider the following more general problem:

min
x,y,z(ξ)

E[f (x, y, z(ξ), ξ)]

s.t. x ∈ X,
0 ≤ y⊥E[G(x, y, z(ξ), ξ)] ≥ 0, (1.1)
0 ≤ z(ξ)⊥H(x, y, z(ξ), ξ) ≥ 0, a.e. ξ ∈ Ξ ,

where X is a nonempty closed subset of Rn, ‘a.e.’ is the abbreviation for ‘‘almost every’’, ξ : Ω → Rd denotes a vector
of random variables defined on the underlying probability space (Ω,F , P) with support set Ξ ⊂ Rd,E denotes the
expectation operator, the functions f : Rn+m+s

× Ξ → ℜ,G : Rn+m+s
× Ξ → Rm and H : Rn+m+s

× Ξ → Rs are
all continuously differentiable in (x, y, z(ξ)) for almost every ξ ∈ Ξ and locally Lipschitz continuous in ξ , and the symbol⊥
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stands for orthogonality of the two vectors on both sides. Hereafter z(ξ)means that z depends on ξ rather than a function
of ξ .

As usual, we may regard x as upper-level decision variables and (y, z(ξ)) as lower-level decision variables. We call
problem (1.1) a stochastic mathematical program with hybrid equilibrium constraints (SMPHEC), which means that the
upper-level variables x and the lower-level variables y are made before the random event is known but the other lower-
level variables will be made after the random event is known.

The rest of the paper is organized as follows. In Section 2, we give an example called picnic-vendor decision problem
with multiple choices, which can be formulated as the model (1.1). In Section 3, we recall some definitions and preliminary
results. In Section 4, we apply the smoothing and penalty techniques to present a sampling average approximation method
for solving the SMPHEC (1.1) and, in Section 5, we study the limiting behaviors of the optimal solutions and stationary points
of the approximation problems. We report some preliminary numerical results on some simple examples in Section 6.

2. Picnic-vendor decision problem with multiple choices

In this section, we give an example to illustrate the model (1.1). Different from the ones discussed in [5,7], the vendors
have multiple choices in the example.

Consider a food company thatwholesales picnic lunches tom vendorswho sell lunches at different spots on every Sunday.
The company and the vendors have the following contract:

• The vendors may order lunches either on Saturday at the price x ∈ [a, b] or in the morning of Sunday at the price k0x,
where both a and b are positive constants and k0 > 1, and each vendor must buy no less than the amount c > 0.

• Even if there are any unsold lunches, the vendors cannot return them to the company but they can dispose of the unsold
lunches with no cost.

Suppose that the ith vendor sells lunches to hikers at the price kixwith ki > k0. In general, the demands of lunches depend
on the price and the weather on that day. Since the weather is uncertain, we treat it as a random variable ξ with a support
set Ξ . Moreover, we denote by yi and ui(ξ) the amounts of the ith vendor ordered on Saturday and Sunday, respectively.
The company’s objective is to maximize its total earnings and so its model can be formulated as

max
m∑
i=1


xyi + k0xE[ui(ξ)]


s.t. a ≤ x ≤ b. (2.1)

Denote by di(x, ξ) the demand at the ith spot. The model for the ith vendor is

max E[kixmin{di(x, ξ), yi + ui(ξ)} − xyi − k0xui(ξ)]

s.t. yi ≥ 0,
ui(ξ) ≥ 0, yi + ui(ξ) ≥ c, ξ ∈ Ξ ,

which is equivalent to

min E[−kixti(ξ)+ xyi + k0xui(ξ)]

s.t. yi ≥ 0, ui(ξ) ≥ 0, yi + ui(ξ) ≥ c, (2.2)
di(x, ξ)− ti(ξ) ≥ 0, yi + ui(ξ)− ti(ξ) ≥ 0, ξ ∈ Ξ .

We suppose for simplicity that Ξ = {ξ 1, ξ 2, . . . , ξ L} and, for each ℓ, the probability pℓ of ξ ℓ is positive. Note that, for any
fixed x, problem (2.2) is a linear programming problem. As a result, (2.2) is equivalent to its Karush–Kuhn–Tucker (KKT)
conditions, that is, there exist Lagrange multipliers αi ∈ R, β i

∈ RL, γ i
∈ RL, δi ∈ RL, and ηi ∈ RL satisfying

 x
k0xp
−kixp


−


αi
0
0


−

 0
β i

0

−


L−

l=1

γ i
l

γ i

0

−

 0
0

−δi

−


L−

l=1

ηil

ηi

−ηi

 = 0, (2.3)

where p = (p1, p2, . . . , pL)T , and

0 ≤ αi ⊥ yi ≥ 0, (2.4)

0 ≤ β i
ℓ ⊥ ui(ξ

ℓ) ≥ 0, (2.5)

0 ≤ γ i
ℓ ⊥ yi + ui(ξ

ℓ)− c ≥ 0, (2.6)

0 ≤ δiℓ ⊥ di(x, ξ ℓ)− ti(ξ ℓ) ≥ 0, (2.7)

0 ≤ ηiℓ ⊥ yi + ui(ξ
ℓ)− ti(ξ ℓ) ≥ 0 (2.8)
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for each ℓ. It follows from (2.3) that

αi = x −

L−
l=1

γ i
l −

L−
l=1

ηil,

β i
= k0xp − γ i

− ηi,

δi = (ki − k0)xp + β i
+ γ i.

It is not difficult to see that δiℓ > 0 for each ℓ. This together with (2.7) yields that ti(ξ ℓ) = di(x, ξ ℓ) for each ℓ. Thus, the KKT
conditions (2.3)–(2.8) are rewritten as

0 ≤ yi ⊥ x −

L−
l=1

γ i
l −

L−
l=1

ηil ≥ 0,

0 ≤ ui(ξ
ℓ) ⊥ pℓk0x − γ i

ℓ − ηiℓ ≥ 0,
0 ≤ γ i

ℓ ⊥ yi + ui(ξ
ℓ)− c ≥ 0,

0 ≤ ηiℓ ⊥ yi + ui(ξ
ℓ)− di(x, ξ ℓ) ≥ 0,

 ℓ = 1, 2, . . . , L.

In consequence, the model (2.1) for the company can be reformulated as

max
L∑
ℓ=1

pℓ
m∑
i=1


xyi + k0xui(ξ

ℓ)


s.t. a ≤ x ≤ b,

0 ≤ yi ⊥

L∑
l=1

pl

x − γ i(ξ l)− ηi(ξ l)


≥ 0,

0 ≤ ui(ξ
ℓ) ⊥ k0x − γ i(ξ ℓ)− ηi(ξ ℓ) ≥ 0,

0 ≤ γ i(ξ ℓ) ⊥ yi + ui(ξ
ℓ)− c ≥ 0,

0 ≤ ηi(ξ ℓ) ⊥ yi + ui(ξ
ℓ)− di(x, ξ ℓ) ≥ 0,

i = 1, 2, . . . ,m, ℓ = 1, 2, . . . , L,

which is obviously a special case of problem (1.1).

3. Preliminaries

Throughout this paper, we use ‖ · ‖ to denote the Euclidean norm and B(x, γ ) to denote the closed ball with center x and
radius γ and, for simplicity, we use B to denote the closed unit ball. We next recall some definitions and results that will
be used later on.

Let X be a closed subset of Rn. A set-valued mapping G : X → 2Rm
is said to be upper semi-continuous at point x ∈ X if

for any neighborhood U of G(x), there exists η > 0 such that G(x′) ⊆ U holds for any x′
∈ B(x, η) ∩ X . Moreover, G is said

to be locally bounded at x if there exists a neighborhood U of x such that


x′∈U G(x′) is bounded.
Consider now a random set-valued mapping G(·, ξ(·)) : X × Ω → 2Rn

(we are slightly abusing the notation G).
Let B denote the space of nonempty, closed subsets of Rn. G(x, ξ(·))−1 is said to be F -measurable if G(x, ξ(·))−1B is F -
measurable for every B ∈ B [17]. In addition, a(x, ξ(ω)) ∈ G(x, ξ(ω)) is said to be a measurable selection of the random set
G(x, ξ(ω)), if a(x, ξ(ω)) is measurable. The expectation of G(x, ξ(ω)), denoted by E[G(x, ξ(ω))], is defined as the collection
of E[a(x, ξ(ω))], where a(x, ξ(ω)) is an integrable measurable selection. The expected value is also known as Aumann’s
integral [18].

Let D be a nonempty closed subset of Rn. Given z ∈ D , the Clarke normal cone is defined as the polar cone of the Clarke
tangent cone TD(z), that is,

ND(z) =

ζ ∈ Rn

: ζ Tη ≤ 0,∀η ∈ TD(z)

,

where TD(z) = lim inft→0,D∋z′→z
1
t (D − z ′).

Let Γ : Rn
→ Rm be a locally Lipschitz continuous function. The Clarke generalized Jacobian of Γ at x ∈ Rn is defined as

∂Γ (x) := conv


lim
y∈D,y→x

∇Γ (y)

, (3.1)

where D denotes the set of points at which Γ is Fréchet differentiable, ∇Γ (y) denotes the usual Jacobian of Γ , and ‘‘conv’’
denotes the convex hull of a set. Note that the Clarke Jacobian ∂Γ (·) is upper semi-continuous [19].

Lemma 3.1 ([20]). Let Γ (x, ξ) be locally Lipschitz continuous in both x and ξ . Then the Clarke generalized gradient ∂xΓ (x, ξ)
is measurable.
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Let Γ : Rn
× Rm

→ Rs. We say Γ (x, y) to be uniformly strongly monotone with respect to x if there exists a constant
α > 0 such that

(Γ (x′, y)− Γ (x′′, y))T (x′
− x′′) ≥ α‖x′

− x′′
‖
2, x′, x′′

∈ Rn, y ∈ Rm.

We say a sequence {ψN
} of extended real-valued functions defined on Rn to converge continuously to ψ , denoted by

ψN C
−→ ψ for short, if ψN(xN) → ψ(x) holds for any given x ∈ Rn and any sequence {xN} converging to x. Note that, if the

limiting function ψ(·) is continuous, the continuous convergence coincides with uniform convergence on compact set.
A function φ : R2

→ R is said to be an NCP function if

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0

holds for any a, b ∈ R. See [21] for more details about NCP functions. In this paper, we consider the well-known
Fischer–Burmeister (FB) function defined by

φFB(a, b) := a + b −


a2 + b2.

Since the nonsmoothness of φFB may incur troubles in calculation, we will use the smoothed FB function

φ(a, b;µ) := a + b −


a2 + b2 + µ2,

where µ is a positive scalar, to approximate φ(a, b; 0). It is obvious that φ(a, b, µ) is globally Lipschitz continuous and
continuously differentiable everywhere except (0, 0, 0). Moreover, we have the following result.

Lemma 3.2 ([10]). Let µ ≥ 0. Then, for any real numbers ai and bi, i = 1, 2, we have

|φ(a1, b1;µ)− φ(a2, b2;µ)| ≤ 2(|a1 − a2| + |b1 − b2|),
|φ(a1, b1;µ)− φ(a2, b2; 0)| ≤ 2(|a1 − a2| + |b1 − b2|)+ µ.

4. Approximation method for SMPHEC

Problem (1.1) has three main difficulties. Firstly, the variable z(·) depends on ξ , which means that there are infinitely
many complementarity constraints in general. Secondly, it may be numerically too expensive to calculate the expected
value. Thirdly, problem (1.1) fails to satisfy a standard constraint qualification at any feasible point [22]. In what follows,
we consider a special case where the complementarity constraint 0 ≤ z(ξ)⊥H(x, y, z(ξ), ξ) ≥ 0 has a unique solution for
each ξ and (x, y). In order to solve problem (1.1), we will employ the well-known sampling average approximation (SAA)
method to approximate the expectation and use the smoothed NCP function to approach the complementarities, that is, we
will use a sequence of standard nonlinear programs to approximate the true problem (1.1).

In what follows, we denote by

Φ(x, y, z, ξ , µ) :=

φ

z1,H1(x, y, z, ξ);µ


...

φ

zs,Hs(x, y, z, ξ);µ


 .

Then we have the following result.

Lemma 4.1 ([13]). Suppose that H(x, y, z, ξ) is uniformly strongly monotone in z and uniformly locally Lipschitz continuous in
(x, y, ξ). Then

(i) ∂zΦ(x, y, z, ξ , µ) is uniformly nonsingular and there exists a constant µ0 > 0 such that the system of equation

Φ(x, y, z, ξ , µ) = 0

defines a unique implicit function z(x, y, ξ ;µ) satisfying

Φ(x, y, z(x, y, ξ ;µ), ξ, µ) = 0

for any x ∈ X, y ∈ Rm, ξ ∈ Ξ , and µ ∈ [−µ0, µ0];
(ii) z(x, y, ξ ;µ) is locally Lipschitz continuous with respect to (x, y, ξ , µ) on X × Rm

× Ξ × [−µ0, µ0];
(iii) z(x, y, ξ ;µ) is continuously differentiable with respect to (x, y, µ) on X × Rm

× ([−µ0, µ0] \ {0});
(iv) z(x, y, ξ ;µ) is uniformly calm in µ at 0, that is, there exists a constant C > 0 such that

‖z(x, y, ξ ;µ)− z(x, y, ξ ; 0)‖ ≤ C |µ|, µ ∈ [−µ0, µ0];

(v) the Clarke generalized Jacobian ∂(x,y)z(x, y, ξ ; 0) can be estimated as

∂(x,y)z(x, y, ξ ; 0) ⊆ −[∂zΦ(x, y, z(x, y, ξ ; 0), ξ , 0)]−1∂(x,y)Φ(x, y, z(x, y, ξ ; 0), ξ , 0).
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Note that the continuity of z(x, y, ξ ;µ) implies its measurability. Using the above implicit function theorem and the FB
function φFB, problem (1.1) can be rewritten as

min
x,y

E[f (x, y, z(x, y, ξ ; 0), ξ)] (4.1)

s.t. x ∈ X, Ψ (x, y) = 0,

where z(x, y, ξ ; 0) solvesΦ(x, y, z, ξ , 0) = 0 and

Ψ (x, y) :=

φFB

y1,E[G1(x, y, z(x, y, ξ ; 0), ξ)]


...

φFB

ym,E[Gm(x, y, z(x, y, ξ ; 0), ξ)]


 .

We next employ the SAA method to approximate the expectations. Indeed the SAA method has been wildly used
in dealing with SMPEC; see [6,11,16,13,23]. In general, for an integrable function ψ : Ξ → R, the SAA method
estimatesE[ψ(ξ)]by taking independently and identically distributed randomsamples {ξ 1, . . . , ξN} fromΞ and calculating
1
N

∑N
ℓ=1 ψ(ξ

ℓ). The strong law of large numbers guarantees that this procedure convergeswith probability one (abbreviated
by ‘‘w.p.1’’), i.e.,

lim
N→∞

1
N

N−
ℓ=1

ψ(ξ ℓ) = E[ψ(ξ)] :=

∫
Ξ

ψ(ξ)dζ (ξ), (4.2)

where ζ (ξ) denotes the distribution function of ξ and N tends to +∞.
As mentioned before, we use the smoothed function φ(·, ·;µ) to approximate φ(·, ·; 0). Thus, by taking independently

and identically distributed random samples {ξ 1, . . . , ξN} from Ξ and a sequence of smooth parameters {µN} satisfying
µN ↓ 0 as N → ∞ and employing a penalty technique, (4.1) can be approximated by the problem

min
x,y

1
N

N∑
ℓ=1

f (x, y, z(x, y, ξ ℓ;µN), ξ
ℓ)+ ρN‖Ψ N(x, y)‖2 (4.3)

s.t. x ∈ X,

where ρN > 0 is a penalty parameter, z(x, y, ξ ℓ;µN) solvesΦ(x, y, z, ξ ℓ, µN) = 0 for each ℓ, and

Ψ N(x, y) :=


φ


y1,

1
N

N−
ℓ=1

G1(x, y, z(x, y, ξ ℓ;µN), ξ
ℓ);µN


...

φ


ym,

1
N

N−
ℓ=1

Gm(x, y, z(x, y, ξ ℓ;µN), ξ
ℓ);µN




.

Difference from (1.1), for any fixedN , (4.3) is a standardnonlinear problemand all the functions involved are continuously
differentiable. There are lots of mature algorithms having been proposed for this kind of problems. This means that we
can use various mature algorithms to solve the approximation problem (4.3). The key point is whether the solutions or
stationary points obtained by solving (4.3) converge to the counterparts of problem (1.1) as N tends to infinity. In the rest
of this section, we study the convergence properties of (4.3). For the simplicity of notation, we take z(x, y, ξ ;µ) to be the
solution ofΦ(x, y, z, ξ , µ) = 0 in mind and let F denote the feasible region of (4.1).

5. Convergence analysis

Suppose that we obtain a sequence of optimal solutions or stationary points by solving (4.3). We study the tendency of
them as N to infinity. The following lemmas will be used.

Lemma 5.1 ([24, Proposition 7 of Chapter 6]). Let Θ : Rn
× Ξ → Rs be an integrable function and D be a nonempty compact

subset of Rn. Suppose that (i) the function Θ(·, ξ) is continuous on D for almost every ξ ∈ Ξ ; (ii) Θ(x, ·) is dominated by an
integrable function; (iii) the samples are independently and identically distributed. Then the expected value function E[Θ(x, ξ)]
is finite valued and continuous on D and, with probability one, ΘN(x) :=

1
N

∑N
ℓ=1Θ(x, ξ

ℓ) converges to E[Θ(x, ξ)] uniformly
on D.

Lemma 5.2 ([24, Proposition 2 of Chapter 2]). Suppose that (i) Θ(x, ·) is measurable for all x in a neighborhood of x0 and
Θ(x0, ·) is integrable; (ii) there exists an integrable function κ(ξ) such that ‖Θ(x′, ξ) − Θ(x′′, ξ)‖ ≤ κ(ξ)‖x′

− x′′
‖ holds for

any x′ and x′′ close to x0 and almost every ξ ∈ Ξ . If Θ(z, ξ) continuously differentiable for almost every ξ ∈ Ξ , then E[Θ(z, ξ)]
is continuously differentiable and ∇E[Θ(z, ξ)] = E[∇zΘ(z, ξ)].
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5.1. Convergence of global optimal solutions

In order to show convergence of the global optimal solutions of the approximation problems, we choose the parameters
ρN and µN to satisfy the following conditions:

lim
N→∞

ρN = +∞, lim sup
N→∞

ρNµN < +∞, (5.1)

lim
N→∞

√
ρN


1
N

N−
ℓ=1

Gi(x, y, z(x, y, ξ ℓ; 0), ξ ℓ)− E[Gi(x, y, z(x, y, ξ ; 0), ξ)]


= 0 w.p.1 (5.2)

for i = 1, 2, . . . ,m. Note that the convergence in (4.2) is of order O(N−1/2) in probability [25]. This means that
√
N


1
N

∑N
ℓ=1 ψ(ξ

ℓ)−E[ψ(ξ)]


is convergent in probability asN → +∞. Therefore,wemay choose a suitable sequence

{ρN} such that (5.1) and (5.2) hold at least in probability. See [10] for more details about these assumptions.

Theorem 5.1. Suppose that ∇zGi(x, y, z, ξ), 1 ≤ i ≤ m, and f (x, y, z, ξ) are uniformly dominated by the integrable function
δ(ξ) on X × Rm

× Rs. Let (xN , yN) be a global optimal solution of problem (4.3) for each N and (x∗, y∗) be an accumulation point
of {(xN , yN)}. Then (x∗, y∗) is a global optimal solution of problem (4.1) with probability one.

Proof. Taking a subsequence if necessary, we assume for the simplicity of notation that (xN , yN) tends to (x∗, y∗). Since
(xN , yN) is an optimal solution of problem (4.3), we have

1
N

N−
ℓ=1

f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)+ ρN

Ψ N(xN , yN)
2

≤
1
N

N−
ℓ=1

f (x̄, ȳ, z(x̄, ȳ, ξ ℓ;µN), ξ
ℓ)+ ρN

Ψ N(x̄, ȳ)
2 (5.3)

for any (x̄, ȳ) ∈ F and henceΨ N(xN , yN)
2 −

Ψ N(x̄, ȳ)
2

≤ ρ−1
N


1
N

N−
ℓ=1

f (x̄, ȳ, z(x̄, ȳ, ξ ℓ;µN), ξ
ℓ)−

1
N

N−
ℓ=1

f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)


. (5.4)

Noting that (xN , yN , µN) tends to (x∗, y∗, 0), we can choose a compact set U containing the whole sequence {(xN , yN , µN)}
for all N sufficiently large. By the assumptions and Lemma 5.1, the sequences

1
N

N−
ℓ=1

f (x, y, z(x, y, ξ ℓ;µ), ξ ℓ)


,


1
N

N−
ℓ=1

G(x, y, z(x, y, ξ ℓ;µ), ξ ℓ)



converge to E[f (x, y, z(x, y, ξ ℓ;µ), ξ ℓ)] and E[G(x, y, z(x, y, ξ ℓ;µ), ξ ℓ)] uniformly on U with probability one respectively.
Then, with probability one,

1
N

N−
ℓ=1

f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)

N→∞
−−−→ E[f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)], (5.5)

1
N

N−
ℓ=1

G(xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)

N→∞
−−−→ E[G(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)]. (5.6)

Note that Ψ (x̄, ȳ) = 0 by (x̄, ȳ) ∈ F . Taking a limit on both sides of (5.4), we have w.p.1Ψ (x∗, y∗)
2 =

Ψ (x∗, y∗)
2 − ‖Ψ (x̄, ȳ)‖2

≤ lim
N→∞

ρ−1
N


E[f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)− f (x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]


= 0

with probability one. As a result, (x∗, y∗) is feasible to (4.1).
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Let (x̄, ȳ) be an arbitrary point of F . Then, with probability one,

ρN
Ψ N(x̄, ȳ)

2
= ρN

m−
i=1


φ


ȳi,

1
N

N−
ℓ=1

Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ;µN), ξ
ℓ);µN


− φFB(ȳi,E[Gi(x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)])

2

≤ ρN

m−
i=1


2

 1N
N−
ℓ=1

Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ;µN), ξ
ℓ)− E[Gi(x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]

+ µN

2

≤ ρN

m−
i=1


2

 1N
N−
ℓ=1


Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ;µN), ξ

ℓ)− Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ; 0), ξ ℓ)


+ 2

 1N
N−
ℓ=1

Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ; 0), ξ ℓ)− E[Gi(x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]

+ µN

2

≤

m−
i=1

[
2
√
ρN

 1N
N−
ℓ=1

δ(ξ ℓ) · (z(x̄, ȳ, ξ ℓ;µN)− z(x̄, ȳ, ξ ℓ; 0))


+ 2

√
ρN

 1N
N−
ℓ=1

Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ; 0), ξ ℓ)− E[Gi(x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]

+ √
ρNµN

]2

≤

m−
i=1

[
2
√
ρN

 1N
N−
ℓ=1

δ(ξ ℓ) · Ĉ · µN


+ 2

√
ρN

 1N
N−
ℓ=1

Gi(x̄, ȳ, z(x̄, ȳ, ξ ℓ; 0), ξ ℓ)− E[Gi(x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]

+ √
ρNµN

]2
N→∞
−−−→ 0. (5.7)

Here, the first inequality follows from Lemma 3.2, the third inequality follows from the mean value theorem and the
assumption that ∇zGi(x, y, z, ξ) is dominated by δ(ξ) for each i = 1, . . . ,m, the fourth inequality follows from (iv) of
Lemma 4.1, and the limit follows from (5.1)–(5.2) and the fact that δ is integrable. In consequence, taking a limit in (5.3), we
have from (5.5) and (5.7) that

E[f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)] ≤ E[f (x̄, ȳ, z(x̄, ȳ, ξ ; 0), ξ)]

with probability one. This indicates that (x∗, y∗) is an optimal solution of problem (4.1). �

5.2. Convergence of stationary points

In general, it is very difficult to get a global optimal solution since MPEC problems are generally nonconvex due to their
combinatorial nature of the constraints,whereas computation of stationary points is relatively easy. Therefore, it is necessary
to investigate the limiting behavior of stationary points.

Definition 5.1 ([20]). (x∗, y∗) ∈ F is said to be a generalized Clarke stationary point of problem (4.1) if there exists α∗
∈ Rm

such that

0 ∈ ∂E[f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)] + ∂Ψ (x∗, y∗)α∗
+ (NX (x∗), 0)T .

(x∗, y∗) ∈ F is said to be a weak generalized Clarke stationary point of problem (4.1) if there exists α∗
∈ Rm such that

0 ∈ E[∇(x,y)f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)+ A(x∗, y∗, ξ , 0)∇z f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)]

+

E[∇(x,y)G(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)+ A(x∗, y∗, ξ , 0)∇zG(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)]B

+ (0,A )T

α∗

+ (NX (x∗), 0)T , (5.8)

where

A(x, y, ξ , 0) := −∂(x,y)Φ(x, y, z(x, y, ξ ; 0), ξ)[∂zΦ(x, y, z(x, y, ξ ; 0), ξ)]−1, (5.9)

A and B denote the sets of the diagonal matrices diag(a1, . . . , am) and diag(b1, . . . , bm), respectively, with
ai = 1 − ϵ
bi = 1 − δ

(where ϵ2 + δ2 ≤ 1) (5.10)
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if y∗

i = E[Gi(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)] = 0 and, otherwise,
ai = 1 −

y∗

i
(y∗

i )
2 + (E[Gi(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)])2

,

bi = 1 −
E[Gi(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)]

(y∗

i )
2 + (E[Gi(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)])2

.

(5.11)

Under some conditions, generalized Clarke stationary points are weak generalized Clarke stationary points [24,20], but
the converse may not be true.

Definition 5.2. (xN , yN) ∈ X × Rm is said to be a stationary point of problem (4.3) if

0 ∈
1
N

N−
ℓ=1


∇x,yf (xN , yN , z(xN , yN , ξ ℓ;µN), ξ

ℓ)+ A(xN , yN , ξ ℓ, µN)∇z f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)

+

[
A(xN , yN , ξ ℓ, µN)∇zG(xN , yN , z(xN , yN , ξ ℓ;µN), ξ

ℓ)+ ∇(x,y)G(xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)

BN

+ (0, AN)T
]

× 2ρNΨ N(xN , yN)


+ (NX (xN), 0)T , (5.12)

where

A(x, y, ξ , µ) := −∇(x,y)Φ(x, y, z(x, y, ξ ;µ), ξ)[∇zΦ(x, y, z(x, y, ξ ;µ), ξ)]−1,

AN
:= diag(aN1 , . . . , a

N
m) and BN

:= diag(bN1 , . . . , b
N
m) are matrices with

aNi = 1 −
yNi

(yNi )2 +


1
N

N∑
ℓ=1

Gi(xN , yN , z(xN , yN , ξ ℓ;µN), ξ ℓ)

2

+ µ2
N

,

bNi = 1 −

1
N

N∑
ℓ=1

Gi(xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)

(yNi )2 +


1
N

N∑
ℓ=1

Gi(xN , yN , z(xN , yN , ξ ℓ;µN), ξ ℓ)

2

+ µ2
N

.

(5.13)

Since f ,G,H , andΦ are all locally Lipschitz continuous in (x, y, ξ), the Clarke generalized gradients ∂(x,y)f , ∂(x,y)G, ∂(x,y)H ,
and ∂(x,y)Φ are all measurable.

Theorem 5.2. Suppose that ∇(x,y)Hi(x, y, z, ξ), i = 1, . . . , s, are dominated by an integrable function δ(ξ) uniformly on
X × Rm

× Rs. Then

(i) A(x, y, ξ , µ) is upper semi-continuous with respect to (x, y, µ) on X × Rm
× [−µ0, µ0] for almost every ξ ∈ Ξ , where µ0

is given in Lemma 4.1;
(ii) there exists an integrable function τ(ξ) such that

‖A(x, y, ξ , µ)‖ := sup
A∈A(x,y,ξ ,µ)

‖A‖ ≤ τ(ξ) (5.14)

holds for any (x, y, µ) ∈ X × Rm
× [−µ0, µ0] and almost every ξ ∈ Ξ .

Proof. (i) When µ ≠ 0, we have

A(x, y, ξ , µ) = −∇(x,y)Φ(x, y, z(x, y, ξ ;µ), ξ, µ)[∇zΦ(x, y, z(x, y, ξ ;µ), ξ, µ)]−1

= −∇(x,y)H(x, y, z(x, y, ξ ;µ), ξ) B̄[∇zΦ(x, y, z(x, y, ξ ;µ), ξ, µ)]−1,

where B̄ := diag(b1, . . . , bs)with

bi = 1 −
Hi(x, y, z(x, y, ξ ;µ), ξ)

(yi)2 + [Hi(x, y, z(x, y, ξ ;µ), ξ)]2 + µ2
.

Since H(x, y, z, ξ) and φ(a, b;µ) are continuously differentiable in (x, y, z) and (a, b) respectively, A(x, y, ξ , µ) is
continuous in (x, y, µ) for almost every ξ ∈ Ξ .
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When µ = 0, we have

A(x, y, ξ , 0) := −∂(x,y)Φ(x, y, z(x, y, ξ ; 0), ξ , 0)[∂zΦ(x, y, z(x, y, ξ ; 0), ξ , 0)]−1.

It follows from (i) of Lemma 4.1 that ∂zΦ(x, y, z(x, y, ξ ; 0), ξ) is uniformly nonsingular, that is, there exists a constant ν > 0
such that

‖[∂zΦ(x, y, z(x, y, ξ ; 0), ξ , 0)]−1
‖ ≤ ν (5.15)

for any (x, y) ∈ X × Rm and ξ ∈ Ξ . Note that φ(a, b;µ) is Lipschitz continuous with respect to (a, b, µ) and H(x, y, z, ξ) is
continuously differentiablewith respect to (x, y, z). Then,Φ(x, y, z(x, y, ξ ; 0), ξ) is locally Lipschitz continuouswith respect
to (x, y) and hence ∂(x,y)Φ(x′, y′, z(x′, y′, ξ ; 0), ξ) is bounded for all (x′, y′, µ′) closing to (x, y, 0). Consequently, there exists
a neighborhood U(x,y,0) of (x, y, 0) such that the closure of ∪(x′,y′,µ′)∈U(x,y,0) A(x′, y′, ξ , µ′) is a compact set. By the definition
of Clarke generalized Jacobian, A(·, ·, ξ , ·) is closed at (x, y, 0). Therefore, we have from [26, Theorem 5] that A(·, ·, ξ , ·) is
upper semi-continuous on X × Rm

× [−µ0, µ0].
(ii) When µ ≠ 0, we have

‖A(x, y, ξ , µ)‖ =
−∇(x,y)H(x, y, z(x, y, ξ ;µ), ξ)B̄[∇zΦ(x, y, z(x, y, ξ ;µ), ξ)]−1


≤
∇(x,y)H(x, y, z(x, y, ξ ;µ), ξ)

 ·
B̄‖ · ‖[∇zΦ(x, y, z(x, y, ξ ;µ), ξ)]−1


≤ sν

B̄ δ(ξ)
≤ 2sνδ(ξ) (5.16)

for every (x, y, µ) ∈ X×Rm
×[−µ0, µ0] and almost every ξ ∈ Ξ . Here the second inequality follows from (5.15) and the fact

that ∇(x,y)Hi(x, y, z, ξ), i = 1, . . . , s, are dominated by δ(ξ) and the last inequality follows from |bi| ≤ 2 for i = 1, . . . ,m.
When µ = 0, we have

A(x, y, ξ , 0) = −∂(x,y)Φ(x, y, z(x, y, ξ ; 0), ξ , 0)[∂zΦ(x, y, z(x, y, ξ ; 0), ξ , 0)]−1

= −∇(x,y)H(x, y, z(x, y, ξ ; 0), ξ)B[∂zΦ(x, y, z(x, y, ξ ; 0), ξ , 0)]−1,

where B is the set of the matrices diag(b1, . . . , bs)with

bi =


0 ≤ c ≤ 2, if zi(x, y, ξ ; 0) = Hi(x, y, z(x, y, ξ ; 0), ξ) = 0,

1 −
Hi(x, y, z(x, y, ξ ; 0), ξ)

(yi)2 + [Hi(x, y, z(x, y, ξ ; 0), ξ)]2
, otherwise.

In a similar way to (5.16), we can show

‖A(x, y, ξ , 0)‖ ≤ 2sνδ(ξ)

for every (x, y, µ) ∈ X×Rm
×[−µ0, µ0] and almost every ξ ∈ Ξ . Letting τ(ξ) = 2sνδ(ξ), we have (5.14) immediately. �

We next show the main convergence result of this subsection. The following lemma is useful.

Lemma 5.3 ([20]). Let V be a compact set and G(v, ξ) : V ×Ξ → 2Rm
be a measurable and compact set-valued mapping that

is upper semi-continuous with respect to v on V for almost every ξ . Let ξ 1, . . . , ξN be independently and identically distributed
random samples and

GN(v) :=
1
N

N−
i=1

G(v, ξ i).

Suppose that G(v, ξ) is dominated by an integrable function δ(ξ). Consider the stochastic generalized equation

0 ∈ E[convG(v, ξ)], (5.17)

and its sample average approximation

0 ∈ GN(v). (5.18)

Suppose that both (5.17) and (5.18) have nonempty solution sets. Let vN be a solution of (5.18). Then with probability one, an
accumulation point of {vN} is a solution of (5.17).

Aprobabilitymeasure space (Ω, C , P) is called nonatomic if, for any C1 and C2 inC , P(C1) > 0 implies that there exists C2
satisfying C2 ⊂ C1 and 0 < P(C2) < P(C1). By Theorem 5.4 of [27], E[convG(z, ξ)] = E[G(z, ξ)] if the involved probability
measure in Lemma 5.3 is nonatomic.



Y.-C. Liu et al. / Journal of Computational and Applied Mathematics 235 (2011) 3870–3882 3879

Theorem 5.3. Suppose that ∇(x,y)Hi(x, y, z, ξ), i = 1, . . . , s,∇(x,y,z)Gj(x, y, z, ξ), j = 1, . . . ,m, and ∇(x,y,z)f (x, y, z, ξ) are
all dominated by the integrable function δ(ξ) on X × Rm

× Rs, and the involved probability measure space is nonatomic. Let
(xN , yN) be a stationary point of problem (4.3) for each N. Suppose that there exists a constant π such that

1
N

N−
ℓ=1

f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)+ ρN

Ψ N(xN , yN)
2 ≤ π (5.19)

holds for each N. Then, any accumulation point of {(xN , yN)} is almost surely a weak generalized Clarke stationary point of (4.1).

Proof. Taking a subsequence if necessary, we assume for the simplicity of notation that (xN , yN) tends to (x∗, y∗). It follows
from (5.19) thatΨ N(xN , yN)

2 ≤ ρ−1
N


π −

1
N

N−
ℓ=1

f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ)


.

Taking a limit on both sides of the formula above, we have by (5.5)–(5.6) that Ψ (x∗, y∗) = 0 with probability one, which
means that (x∗, y∗) is feasible to problem (4.1). In a similar way to (5.5)–(5.6), we can show that, with probability one,

lim
N→∞

1
N

N−
ℓ=1

∇(x,y,z)f (xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ) = E[∇(x,y,z)f (x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)], (5.20)

lim
N→∞

1
N

N−
ℓ=1

∇(x,y,z)G(xN , yN , z(xN , yN , ξ ℓ;µN), ξ
ℓ) = E[∇(x,y,z)G(x∗, y∗, z(x∗, y∗, ξ ; 0), ξ)]. (5.21)

Since (xN , yN) tends to (x∗, y∗), we can choose a compact neighborhood U∗ of (x∗, y∗, 0) that contains the whole sequence
{(xN , yN , µN)} for N sufficiently large. Note that A(·, ·, ξ , ·) : U∗

→ 2R(n+m+s)
is a random compact set-valued mapping. It

follows from Theorem 5.2 and Lemma 5.3 that

lim
N→∞

1
N

N−
ℓ=1

A(xN , yN , ξ ℓ, µN) ∈ E[A(x∗, y∗, ξ , 0)] w.p.1. (5.22)

By the definitions, {AN
} and {BN

} converge to A and B respectively. By (5.5) and (5.19), the sequence {ρN‖Ψ N(xN , yN)‖} is
bounded with probability one. Therefore, we may assume that

α∗
:= lim

N→∞

2ρN
Ψ N(xN , yN)

 . (5.23)

Taking a limit in (5.12), we have by (5.20)–(5.23) and upper semi-continuity of Clarke normal cone that (5.8) holds with
probability one. That is, w.p.1 (x∗, y∗) is a weak generalized Clarke stationary point of (1.1), where α∗ is the corresponding
Lagrange multiplier. �

6. Preliminary numerical results

We have tested the proposed method on some examples of SMPHEC. The examples are constructed based on the ones
given in [16].

Example 6.1. Consider the problem

min f (x, y, z) :=

2∑
i=1

E[(xi − 1)2 + (yi − 1)2 + z2i ]

s.t. x1 ∈ [0, 10], x2 ∈ [0, 5],
0 ≤ y1⊥E[z1 + x1 + ξ1] ≥ 0,
0 ≤ y2⊥E[z2 − x2 + ξ2] ≥ 0,
0 ≤ zi⊥zi − xi + ξi ≥ 0, i = 1, 2,

where the random variables ξ1 and ξ2 are independent and uniformly distributed on [0, 1]. Note that, for any fixed x and ξ ,
the last two complementarity constraints imply that

zi(x, ξ) = max{xi − ξi, 0}, i = 1, 2.

It follows that
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f (x, y, z(x, ξ)) =

2−
i=1


(xi − 1)2 + (yi − 1)2 +

x3i
3


E[z1(x, ξ)+ x1 + ξ1] =

x21
2

+ x1 +
1
2
,

E[z2(x, ξ)− x2 + ξ2] =
x22
2

− x2 +
1
2
,

and hence
0 ≤ y1⊥E[z1(x, ξ)+ x1 + ξ1] ≥ 0
0 ≤ y2⊥E[z2(x, ξ)− x2 + ξ2] ≥ 0 ⇐⇒


y1 = 0,
0 ≤ y2⊥(x2 − 1)2 ≥ 0.

By straightforward analysis, we have that the optimal solution is

x∗
=


−1 +

√
3

1


, y∗

=


0
1


, z∗(ξ) =


max{−1 +

√
3 − ξ1, 0}

1 − ξ2


and the optimal value is 1.535898.

Example 6.2. Consider the problem

min
3∑

i=1
E[(xi − 1)2 + (yi − 1)2 + z2i ]

s.t. x1 ∈ [0, 10], x2 ∈ [0, 5], x3 ∈ [0, 7],
0 ≤ y1⊥E[z1 + x1 + ξ1] ≥ 0,
0 ≤ y2⊥E[z2 − x2 + ξ2] ≥ 0,
0 ≤ y3⊥E[z3 + x3 + ξ3] ≥ 0,
0 ≤ zi⊥zi − xi + ξi ≥ 0, i = 1, 2, 3,

where the random variables ξ1, ξ2, and ξ3 are independent and uniformly distributed on [0, 1]. In a similar way to
Example 6.1 , we can get that the optimal solution is

x∗
=

−1 +
√
3

1
−1 +

√
3

 , y∗
=

0
1
0


, z∗(ξ) =

max{−1 +
√
3 − ξ1, 0}

1 − ξ2

max{−1 +
√
3 − ξ3, 0}


and the optimal value is 2.738463.

Example 6.3. Consider the problem

min
2∑

i=1
E[(xi − 1)2 + (yi − 1)2 + z2i ]

s.t. x1 ∈ [0, 2], x2 ∈ [0, 5],
0 ≤ y1⊥E[z1 + ξ1 + ξ2] ≥ 0,
0 ≤ y2⊥E[z2 − x2 + ξ2] ≥ 0,
0 ≤ z1⊥z1 − x1 + ξ1 − ξ2 ≥ 0,
0 ≤ z2⊥z2 − x2 + ξ2 ≥ 0,

where the random variables ξ1 and ξ2 are independent and uniformly distributed on [0, 1]. Note that, for any fixed x and ξ ,
the last two complementarity constraints imply that

z1(x, ξ) = max{x1 − ξ1 + ξ2, 0}, z2(x, ξ) = max{x2 − ξ2, 0}.

Then, by straightforward calculus, we can show that the problem is equivalent to

min f (x, y)
s.t. x1 ∈ [0, 2], x2 ∈ [0, 5], y1 = 0,

0 ≤ y2⊥(x2 − 1)2 ≥ 0,
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Table 1
Numerical results for Example 6.1.

N ρN µN Iter Opt.Sol Opt.val
xN yN

100 200 10−2 24 (0.742622, 1.012852) (3.3 × 10−5 , 0.994175) 1.531074
200 400 10−3 22 (0.734633, 0.993295) (3.3 × 10−7 , 1.000085) 1.497065
400 800 10−4 30 (0.730337, 0.996850) (3.3 × 10−9 , 1.000425) 1.508721
600 1600 10−5 24 (0.735411, 0.998209) (3.0 × 10−11 , 0.998459) 1.509286

1200 3200 10−6 30 (0.732355, 0.998397) (−7.0 × 10−11 , 0.999168) 1.524088
2400 6400 10−7 33 (0.733752, 0.999900) (6.2 × 10−13 , 1.000067) 1.532532

Table 2
Numerical results for Example 6.2.

N ρN µN Iter Opt.Sol Opt.val
xN yN

100 200 10−2 32 (0.748955, 0.980532, 0.738435) (3.3 × 10−5 , 0.995699, 3.3 × 10−5) 2.731662
200 400 10−3 45 (0.759120, 0.993629, 0.736650) (3.2 × 10−7 , 0.998971, 3.3 × 10−7) 2.717602
400 800 10−4 55 (0.741465, 0.997210, 0.737922) (1.5 × 10−9 , 1.000141, 2.0 × 10−10) 2.708110
600 1600 10−5 55 (0.733683, 0.998472, 0.735687) (−3.7 × 10−10 , 1.000040, −1.1 × 10−10) 2.712522

1200 3200 10−6 62 (0.739799, 0.999596, 0.740623) (4.8 × 10−11 , 1.000626, −1.1 × 10−9) 2.722092
2400 6400 10−7 47 (0.730216, 0.999507, 0.733022) (9.7 × 10−12 , 1.000025, 1.6 × 10−11) 2.733244

Table 3
Numerical results for Example 6.3.

N ρN µN Iter Opt.Sol Opt.val
xN yN

100 200 10−2 18 (0.542437, 0.994594) (2.5 × 10−5 ,0.995368) 1.980037
200 400 10−3 25 (0.503722, 0.998290) (2.5 × 10−9 , 0.999816) 1.977099
400 800 10−4 35 (0.478069, 0.998976) (1.4 × 10−9 , 0.999705) 1.991928
600 1600 10−5 22 (0.500111, 0.998526) (−1.4 × 10−10 , 1.000354) 1.971583

1200 3200 10−6 31 (0.493165, 0.998809) (2.8 × 10−13 , 0.998754) 1.980111
2400 6400 10−7 33 (0.493582, 0.999614) (−2.7 × 10−11 , 1.000089) 1.972298

Table 4
Initial points used in the tests.

x y

Example 6.1 (0.731772, 1.495137) (0.836858, 1.443392)
Example 6.2 (0.625683, 0.769499, 0.566540) (1.291231, 1.225757, 1.443821)
Example 6.3 (0.751742, 1.138252) (0.527568, 1.472677)

where

f (x, y) =


−

1
12

x41 +
1
12
(1 + x1)4 +

1
3
x32 +

2−
i=1

((xi − 1)2 + (yi − 1)2), x1 ∈ [0, 1],

−
1
6
x41 +

1
12

[(1 + x1)4 + (x1 − 1)4] +
1
3
x32 +

2−
i=1

((xi − 1)2 + (yi − 1)2), x1 ∈ [1, 2].

We further can get that the optimal solution is

x∗
=

1
6

√
141 −

3
2

1

 , y∗
=


0
1


, z∗(ξ) =

max

1
6

√
141 −

3
2

− ξ1 + ξ2, 0


1 − ξ2


and the optimal value is 1.999226.

The computational results for Examples 6.1–6.3 are reported in Tables 1–3, respectively. In our experiments, we
employed the random number generator rand in Matlab 7.1 to generate the initial points, which are shown in Table 4,
and the independently and identically distributed random samples from Ξ and we solved the approximation problems by
the solver fmincon inMatlab 7.1. In the tables, iter denotes the number of iterations returned by fmincon, Opt.Sol denotes
the approximate optimal solutions and Opt.Val denotes the optimal values. The results shown in the tables reveal that the
proposed method was able to solve the examples successfully.
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7. Conclusions

Wehave presented a newSMPECmodel, which includes either ‘‘here-and-now’’ or ‘‘wait-and-see’’ type complementarity
constraints. An example has been employed to describe the necessity of the study of the newmodel. In order to solve the new
model, we employed the SAA techniques to approximate the expectations and used the smoothing and penalty techniques
to deal with the complementarity constraints. Convergence theory of the proposed approach has been established. Actually,
the FB function employed in the previous sections may be replaced by other NCP functions.

On the other hand, we have noticed that Anitescu and Birge discussed the following stochastic optimization problems
with mixed expectations and per-scenario constraints (SOESC) in the recent paper [28]:

min
x,z(ξ)

E[f (x, z(ξ), ξ)]

s.t. E[G(x, z(ξ), ξ)] = 0,
H(x, z(ξ), ξ) = 0, a.e. ξ ∈ Ξ .

Obviously, by using some NCP function in dealing with the complementarity constraints, problem (1.1) can be rewritten
as a special case of SOESC, in which the constraints related to the complementarity constraints are generally nonsmooth.
However, all functions involved in [28] are assumed to be smooth. Therefore, problem (1.1) is essentially different from the
problem studied in [28].
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