544 research outputs found

    Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries

    Full text link
    We discussed the scenario that a discrete flavor group combined with CP symmetry is broken to Z2×CPZ_2\times CP in both neutrino and charged lepton sectors. All lepton mixing angles and CP violation phases are predicted to depend on two free parameters θl\theta_{l} and θν\theta_{\nu} varying in the range of [0,π)[0, \pi). As an example, we comprehensively study the lepton mixing patterns which can be derived from the flavor group Δ(6n2)\Delta(6n^2) and CP symmetry. Three kinds of phenomenologically viable lepton mixing matrices are obtained up to row and column permutations. We further extend this approach to the quark sector. The precisely measured quark mixing angles and CP invariant can be accommodated for certain values of the free parameters θu\theta_{u} and θd\theta_{d}. A simultaneous description of quark and lepton flavor mixing structures can be achieved from a common flavor group Δ(6n2)\Delta(6n^2) and CP, and accordingly the smallest value of the group index nn is n=7n=7.Comment: 40 pages, 8 figure

    Quantum Game with Restricted Matrix Strategies

    Full text link
    We study a quantum game played by two players with restricted multiple strategies. It is found that in this restricted quantum game Nash equilibrium does not always exist when the initial state is entangled. At the same time, we find that when Nash equilibrium exists the pay off function is usually different from that in the classical counterpart except in some special cases. This presents an explicit example where quantum game and classical game may differ. When designing a quantum game with limited strategies, the allowed strategy should be carefully chosen according to the type of initial state.Comment: 5 pages and 3 figure

    Modular symmetry origin of texture zeros and quark lepton unification

    Full text link
    The even weight modular forms of level NN can be arranged into the common irreducible representations of the inhomogeneous finite modular group ΓN\Gamma_N and the homogeneous finite modular group ΓN′\Gamma'_N which is the double covering of ΓN\Gamma_N, and the odd weight modular forms of level NN transform in the new representations of ΓN′\Gamma'_N. We find that the above structure of modular forms can naturally generate texture zeros of the fermion mass matrices if we properly assign the representations and weights of the matter fields under the modular group. We perform a comprehensive analysis for the Γ3′≅T′\Gamma'_3\cong T' modular symmetry. The three generations of left-handed quarks are assumed to transform as a doublet and a singlet of T′T', we find six possible texture zeros structures of quark mass matrix up to row and column permutations. We present five benchmark quark models which can produce very good fit to the experimental data. These quark models are further extended to include lepton sector, the resulting models can give a unified description of both quark and lepton masses and flavor mixing simultaneously although they contain less number of free parameters than the observables.Comment: 36 pages, 2 figur
    • …
    corecore