1,281 research outputs found

    Systematic investigation of the rotational bands in nuclei with Z100Z \approx 100 using a particle-number conserving method based on a cranked shell model

    Full text link
    The rotational bands in nuclei with Z100Z \approx 100 are investigated systematically by using a cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (κ\kappa and μ\mu) and deformation parameters (ε2\varepsilon_2 and ε4\varepsilon_4) are proposed. The experimental kinematic moments of inertia for the rotational bands in even-even, odd-AA and odd-odd nuclei, and the bandhead energies of the 1-quasiparticle bands in odd-AA nuclei, are reproduced quite well by the PNC-CSM calculations. By analyzing the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the angular momentum alignment, the upbending mechanism in this region is understood clearly.Comment: 21 pages, 24 figures, extended version of arXiv: 1101.3607 (Phys. Rev. C83, 011304R); added refs.; added Fig. 4 and discussions; Phys. Rev. C, in pres

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure

    Comparison and analysis of bare soil evaporation models combined with ASTER data in Heihe River Basin

    Get PDF
    AbstractBased on ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) remote sensing data, bare soil evaporation was estimated with the Penman-Monteith model, the Priestley-Taylor model, and the aerodynamics model. Evaporation estimated by each of the three models was compared with actual evaporation, and error sources of the three models were analyzed. The mean absolute relative error was 9% for the Penman-Monteith model, 14% for the Priestley-Taylor model, and 32% for the aerodynamics model; the Penman-Monteith model was the best of these three models for estimating bare soil evaporation. The error source of the Penman-Monteith model is the neglect of the advection estimation. The error source of the Priestley-Taylor model is the simplification of the component of aerodynamics as 0.72 times the net radiation. The error source of the aerodynamics model is the difference of vapor pressure and neglect of the radiometric component. The spatial distribution of bare soil evaporation is evident, and its main factors are soil water content and elevation

    1-Methyl-3-trifluoro­methyl-1H-pyrazol-5-ol

    Get PDF
    In the title compound, C5H5F3N2O, the F atoms are disordered over two sets of sites in a 0.64 (3):0.36 (3) ratio. In the crystal structure, O—H⋯N hydrogen bonds link the mol­ecules into chains and a short C—H⋯F contact also occurs

    Diphenyl chloro­thio­phospho­nate

    Get PDF
    The complete mol­ecule of the title compound, C12H10ClO2PS, is generated by crystallographic mirror symmetry, with the P, S and Cl atoms lying on the mirror plane. The resulting PO2SCl tetra­hedron is significantly distorted [O—P—O = 96.79 (9)°]. The crystal packing exhibits no directional inter­actions

    Rotation and alignment of high-jj orbitals in transfermium nuclei

    Full text link
    The structure of nuclei with Z100Z\sim100 is investigated systematically by the Cranked Shell Model (CSM) with pairing correlations treated by a Particle-Number Conserving (PNC) method. In the PNC method, the particle number is conserved and the Pauli blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (κ\kappa and μ\mu) is proposed. The experimental kinematic moments of inertia and the band-head energies are reproduced quite well by the PNC-CSM calculations. The band crossing, the effects of high-jj intruder orbitals and deformation are discussed in detail.Comment: To appear in the Proceedings of the International Nuclear Physics Conference (INPC2013), June 2-7, 2013, Florence, Ital

    Particle-number conserving analysis of rotational bands in 247,249Cm and 249Cf

    Full text link
    The recently observed high-spin rotational bands in odd-AA nuclei 247,249^{247, 249}Cm and 249^{249}Cf [Tandel \textit{et al.}, Phys. Rev. C 82 (2010) 041301R] are investigated by using the cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency ω\omega are reproduced very well by the PNC-CSM calculations. By examining the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals to the angular momentum alignment in each major shell, the level crossing and upbending mechanism in each nucleus is understood clearly.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

    Get PDF
    The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA
    corecore