1,013 research outputs found

    The Relation of Thermal Fluctuation and Information-Entropy for One-Dimensional Rindler Oscillator

    Get PDF
    Within the framework of thermo-field-dynamics (TFD), the information-entropies associated with the measurements of position and momentum for one-dimensional Rindler oscillator are derived, and the connection between its information-entropy and thermal fluctuation is obtained. A conclusion is drawn that the thermal fluctuation leads to the loss of information.Comment: 14 pages, 1 figur

    Proper Matter Collineations of Plane Symmetric Spacetimes

    Get PDF
    We investigate matter collineations of plane symmetric spacetimes when the energy-momentum tensor is degenerate. There exists three interesting cases where the group of matter collineations is finite-dimensional. The matter collineations in these cases are either four, six or ten in which four are isometries and the rest are proper.Comment: 10 pages, LaTex, accepted for publication in Modern Physics Letters

    Solubility prediction of weak electrolyte mixtures

    Get PDF
    International audienceThe solubility of materials is a thermodynamic variable that depends on their chemical composition and with temperature. Solubility is also affected by the pH, by the presence of additional species in the solution, and by the use of different solvents. On electrolyte, the calculation of solubility requires that the mean ionic activity coefficient be known along with a thermodynamic solubility product

    Reconstructing the Equation of State for Dark Energy In the Double Complex Symmetric Gravitational Theory

    Full text link
    We propose to study the accelerating expansion of the universe in the double complex symmetric gravitational theory (DCSGT). The universe we live in is taken as the real part of the whole spacetime MC4(J){\cal M}^4_C(J) which is double complex. By introducing the spatially flat FRW metric, not only the double Friedmann Equations but also the two constraint conditions pJ=0p_J=0 and J2=1J^2=1 are obtained. Furthermore, using parametric DL(z)D_L(z) ansatz, we reconstruct the ω(z)\omega^{'}(z) and V(ϕ)V(\phi) for dark energy from real observational data. We find that in the two cases of J=i,pJ=0J=i,p_J=0 and J=ϵ,pJ0J=\epsilon,p_J\neq 0, the corresponding equations of state ω(z)\omega^{'}(z) remain close to -1 at present (z=0z=0) and change from below -1 to above -1. The results illustrate that the whole spacetime, i.e. the double complex spacetime MC4(J){\cal M}^4_C(J), may be either ordinary complex (J=i,pJ=0J=i,p_J=0) or hyperbolic complex (J=ϵ,pJ0J=\epsilon,p_J\neq 0). And the fate of the universe would be Big Rip in the future.Comment: 5 pages, 5 figures, accepted by Commun. Theor. Phy

    Crystallization of zinc lactate in presence of malic acid

    Get PDF
    International audiencehe influence of malic acid, which acts as an impurity on the cooling crystallization of zinc lactate is investigated in this paper by monitoring the relative supersaturation and the number of crystals during crystallization. The presence of malic acid increases the solution solubility and makes the metastable zone wider; it also changes the habit of the crystal. The purity of the final products is shown to be influenced by the amount and size of seed crystals, cooling rate, seeding temperature and final temperature, but appears to depend mainly on the particle size and level of supersaturation. Residual supersaturation thresholds are observed that depend on the final temperature. A model is proposed to predict the steady-state supersaturation value from the final temperature at a given impurity concentration. This model is based on Kubota and Gibbs equations

    Dirac quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence

    Full text link
    We evaluate the quasinormal modes of massless Dirac perturbation in a Schwarzschild black hole surrounded by the free static spherically symmetric quintessence by using the third-order WKB approximation. The result shows that due to the presence of quintessence, the massless field damps more slowly. The real part of the quasinormal modes increases and the the absolute value of the imaginary part increases when the state parameter wqw_q increases. In other words, the massless Dirac field decays more rapidly for the larger wqw_q. And the peak value of potential barrier gets higher as k|k| increases and the location of peak moves along the right for fixed wqw_q.Comment: 7 pages, 4 figure

    Shape complexity and fractality of fracture surfaces of swelled isotactic polypropylene with supercritical carbon dioxide

    Full text link
    We have investigated the fractal characteristics and shape complexity of the fracture surfaces of swelled isotactic polypropylene Y1600 in supercritical carbon dioxide fluid through the consideration of the statistics of the islands in binary SEM images. The distributions of area AA, perimeter LL, and shape complexity CC follow power laws p(A)A(μA+1)p(A)\sim A^{-(\mu_A+1)}, p(L)L(μL+1)p(L)\sim L^{-(\mu_L+1)}, and p(C)C(ν+1)p(C)\sim C^{-(\nu+1)}, with the scaling ranges spanning over two decades. The perimeter and shape complexity scale respectively as LAD/2L\sim A^{D/2} and CAqC\sim A^q in two scaling regions delimited by A103A\approx 10^3. The fractal dimension and shape complexity increase when the temperature decreases. In addition, the relationships among different power-law scaling exponents μA\mu_A, μB\mu_B, ν\nu, DD, and qq have been derived analytically, assuming that AA, LL, and CC follow power-law distributions.Comment: RevTex, 6 pages including 7 eps figure

    The Complex Symmetry Gravitational Theory as a New Alternative of Dark Energy

    Full text link
    We propose that complex symmetry gravitational theory (CSGT) explain the accelerating expansion of universe. In this paper universe is taken as the double complex symmetric space. Cosmological solution is obtained within CSGT. The conditions of the accelerating expansion of universe are discussed within CSGT. Moreover, the range of equation of state of matter ωϵ\omega_\epsilon is given in the hyperbolic imaginary space.Comment: Latex 9 pages, submitted to International Journal of Theoretical Physic
    corecore