28 research outputs found

    Molecular simulation study on hydration of low-rank coal particles and formation of hydration film

    No full text
    Water molecules in low-rank coal (LRC) significantly influence its upgrading and utilization. To investigate the hydration of LRC particles and the formation of a hydration film, molecular simulation techniques were innovatively used, including molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The adsorption of water molecules on LRC and various oxygen-containing groups was analyzed. The results show that water molecules adsorb close to the LRC surface and form a large overlapping layer at the LRC/water interface. The radial distribution functions (RDFs) show that the adsorption affinity of water molecules on oxygen-containing sites is stronger than that on carbon-containing sites, and the RDF peaks indicate the existence of a hydration film. Moreover, the differences in adsorption between various oxygen-containing groups depend on both the number of hydrogen bonds and the adsorption distances. The calculated binding energies indicate that the adsorption capacity follows the order carboxyl > phenolic hydroxyl > alcoholic hydroxyl > ether linkage > carbonyl. Experimental results show that a high sorption rate exists between water vapor and LRC samples at the beginning of sorption, which verified the simulation results

    Role of Collectors and Depressants in Mineral Flotation: A Theoretical Analysis Based on Extended DLVO Theory

    No full text
    A theoretical analysis was conducted to study the role of collectors and depressants in flotation, based on the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, where the hydrophobic force is considered. The collector-coated hydrophilic particle and the depressant-coated hydrophobic particle are simplified to a sphere uniformly covered with respectively hydrophobic and hydrophilic nanometer-sized hemispherical asperities of identical radius. Results show that the role of a collector in bubble–particle attachment is to create an attractive hydrophobic force and thus overcome the repulsive van der Waals and electrostatic forces. Moreover, increasing the length of the hydrophobic part of the collector molecule is a more effective way to enhance flotation recovery, compared to increasing the collector concentration. For a depressant, however, its function mechanism is to create a strong electrostatic double-layer force, while the suppression of the hydrophobic force plays a secondary role in decreasing the bubble–particle attachment barrier. The depressant molecule length is also a dominant parameter in designing a powerful depressant

    Role of DTAB and SDS in Bubble-Particle Attachment: AFM Force Measurement, Attachment Behaviour Visualization, and Contact Angle Study

    No full text
    Atomic force microscopy (AFM) and contact angle measurements were used to study the role of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) in bubble-particle attachment. The results show that the forces between bubbles and the hydrophilic glass particle were always repulsive in the absence of DTAB and SDS. An attractive hydrophobic force was induced when the particles became hydrophobic, and the force was proportional to the water contact-angle. In the presence of DTAB and SDS, the cationic head group of DTAB adsorbed onto the negative hydrophilic glass surface as a monolayer and thus induced a hydrophobic force. However, at a high DTAB concentration, the DTAB molecules began to adsorb as a bilayer, reverting back to a hydrophilic surface. The hydrophobic force disappeared and the water film between the bubble and particle was stabilised under the repulsive double-layer force. The anionic SDS molecules could not adsorb onto the hydrophilic glass surface. The repulsive force always dominated the bubble-particle interaction. In the case of hydrophobic glass, the hydrophobic force decreased, and even disappeared, with the addition of DTAB and SDS. All the findings from the AFM force curves were consistent with the attachment behaviour and contact angle results

    Understanding the difficult selective separation characteristics of high-ash fine coal

    No full text
    As the supply of high-quality coals decreases and mechanical coal mining becomes more widespread, the high selective recovery of high-ash fine coal has become a prominent problem in the flotation process. Herein, we discuss the main reasons why the selective separation of high-ash fine coal is difficult. The analysis of high-ash fine coal properties shows that coarse particles (0.25-0.5 mm) account for 22.53% of the total size fraction and that 57.90% of the coal is moderate- or high-density (+1.4 g/cm3) intergrowth. Grinding experiments show that the traditional rod mill has little impact on the liberation of the intergrowth. Instead, its main function is to adjust the particle size composition to ensure that the particle sizes of high-ash fine coal are within the particle size range suitable for flotation. The flotation results show that a clean coal yield of 30.42%, with a 12.46% ash content, is obtained with the optimal flotation parameters through the roughing and cleaning flotation process. However, the flotation results also show that in the separation of high-ash fine coal, it is difficult to obtain clean coal with a high yield and low ash content at the same time. This is mainly due to the similar floatability of moderate-density and low-density coal particles, which allows a large number of moderate-density coal particles to be recovered, and a significant slime coating of clay on the coal’s surface that is generated during the flotation process. The results of this work provide valuable guidance for high-ash fine coal industrial flotation applications

    Research on Mechanisms of Improving Flotation Selectivity of Coal Slime by Adding Sodium Polyphosphate

    No full text
    A high percentage of high-ash fine slime materials can deteriorate flotation selectivity through surface covering. This covering of the surface is one of the issues that need to be addressed for efficient flotation processing of difficult-to-separate and high-ash coals. In this study, we investigated the depression effect of SPP on high-ash fine mud by flotation kinetic tests. We also revealed the mechanism of SPP depression of fine slime flotation and enhanced flotation selectivity of difficult-to-separate and high-ash coals by means of Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscopy (AFM) analyses. The results showed that under the best condition of SPP dosage, clean coal with 9.75% ash content and 76.76% yield was obtained. Compared to the blank group, the ash content of the clean coal decreased by 2.39%, while the yield was only reduced by 2.18% in the presence of SPP. The reason for this was that the addition of SPP enhanced the stripping and dispersion of the gangue from the coal particle surface. The result was a reduction in the cover of the coal grain surface and an increase in the hydrophobic sites on the coal surface, thereby depressing the non-selective flotation of the gangue and enhancing the adsorption of the collector on the coal surface. The ash content of the flotation concentrate decreased, but the yield remained almost unchanged, which was the main reason for the better performance of SPP as a depressant compared to conventional depressants

    Effect of Comminution Methods on Low-Rank Coal Bubble–Particle Attachment/Detachment: Implications for Flotation

    No full text
    The floatability of fine low-rank coal particles can be greatly influenced by their morphological characteristics, such as shape and surface roughness. In this study, the attachment efficiency and detachment amplitude of fine low-rank coal particles produced by various comminution methods onto/from the bubble surface were investigated using homemade bubble–particle wrap angle and bubble–particle attachment/detachment testing systems. Results showed that the length–diameter ratio of rod-milled products was smaller than that of crushed products. The wrap angle of particles obtained by the crushed method was larger than that obtained by the rod-milled method, i.e., particles with greater length–diameter ratio showed higher attachment efficiency onto the bubble surface. Meanwhile, particles with greater length–diameter ratio exhibited a larger detachment amplitude, which suggests that it is more difficult to be detached from the bubble surface. However, rod-milled products showed lower attachment onto the bubble surface. The flotation test confirmed that the floatability ratio of crushed products was higher than that of rod-milled products, consistent with evidence from experimental analyses. This study provides a fundamental understanding of particle shapes for low-rank coal flotation by a novel research method combining the attachment efficiency and detachment amplitude of bubble–particle combinations

    Enhanced separation efficiency of low–rank coal using waste engine oil as a flotation collector

    No full text
    Because of the rich oxygen-containing functional groups and developed pores on the Surface of low-rank coal, it is difficult to realize efficient separation during low-rank coal flotation using common oil collectors. Waste engine oil (WEO) is abundant in polar oxygen-containing functional groups and could be an alternative collector. In this study, the effect of WEO on low-rank coal floatation was assessed and engine oil (EO) was also used for comparison. The results show that the separation efficiency of low-rank coal can be significantly improved using WEO; additionally, 96.73% of the clean coal yield can be obtained when the WEO dosage was only 4 kg/t. Compared with EO, the bubble–particle induction time in the presence of WEO shortened from 430 to 220 ms. Moreover, more low-rank coal particles were captured and adhered to the bubble surface using WEO, which indicated a higher probability of bubble–particle attachment. Nonpolar components, polar components and metal ions synergistically promote the flotation separation enhancement of low-rank coal using WEO
    corecore