5 research outputs found

    Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

    Get PDF
    This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM ‘‘needle-like’’ crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.Web of Scienc

    Unveiling Semiconductor Nanostructured Based Holmium-Doped ZnO: Structural, Luminescent and Room Temperature Ferromagnetic Properties

    No full text
    This research work describes the synthesis of ZnO nanostructures doped with Ho3+ ions using a conventional sol–gel synthesis method. The nanostructured produced exhibited a wurtzite hexagonal structure in both ZnO and ZnO:Ho3+ (0.25, 0.5, 0.75 mol%) samples. The change in morphology with addition of Ho3+ dopants was observed, which was assigned to Ostwald ripening effect occurring during the nanoparticles’ growth. The photoluminescence emission properties of the doped samples revealed that Ho3+ was emitting through its electronic transitions. Moreover, reduced surface defects were observed in the Holmium doped samples whose analysis was undertaken using an X-ray Photoelectron Spectroscopy (XPS) technique. Finally, enhanced room temperature ferromagnetism (RT-FM) for Ho3+-doped ZnO (0.5 mol%) samples with a peak-to-peak line width of 452 G was detected and found to be highly correlated to the UV–VIS transmittance results

    Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures

    No full text
    Summarization: The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90 °C to 220 °C, and microwave power, varied from 110 W to 710 W, are assessed. The effect of these parameters on both the structural characteristics and the environmental sustainability of the nanostructures is examined. The nanostructures were characterized by means of X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), ultraviolet–visible spectroscopy (UV–Vis), Photoluminescence (PL) and Brunauer–Emmett–Teller (BET) analysis. Crystalline size was found to be 22.40 nm at 110 W microwave power, 24.83 nm at 310 W, and 24.01 nm at 710 W. Microwave power and synthesis temperature were both directly proportional to the surface area. At 110 W the surface area was 10.44 m2/g, at 310 W 12.88 m2/g, and at 710 W 14.60 m2/g; while it was found to be 11.64 m2/g at 150 °C and 18.09 m2/g at 220 °C. Based on these, a life cycle analysis (LCA) of the produced ZnO nanoparticles was carried out, using the ZnO surface area (1 m2/g) as the functional unit. It was found that the main environmental weaknesses identified during the production process were; (a) the use of ethanol for purifying the produced nanomaterials and (b) the electricity consumption for the ZnO calcination, provided by South Africa's fossil-fuel dependent electricity source. When the effect of the key synthesis parameters on environmental sustainability was examined it was found that an increase of either microwave power (from 110 to 710 W) or synthesis temperatures (from 90 to 220 °C), results in higher sustainability, with the environmental footprint reduced by 27% and 41%, respectively. Through a sensitivity analysis, it was observed that an electricity mix based on renewable energy could improve the environmental sustainability of the nanoparticles by 25%.Παρουσιάστηκε στο: Science of the Total Environmen
    corecore