232 research outputs found

    Recent advances in diagnosis and treatment of chronic myeloproliferative neoplasms

    Get PDF
    The Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) have recently been the focus of tremendous advances in basic knowledge of disease pathophysiology following the recognition of mutations in JAK2 and MPL. These discoveries also led to refinement of the criteria employed for diagnosis. The prognostic roles of the JAK2 V617F mutation and of leukocytosis as independent risk factors for thrombosis, which represents the leading cause of death in patients with polycythemia vera and essential thrombocythemia, are supported by retrospective studies. A new risk stratification approach to the patient with primary myelofibrosis allows clinicians to distinguish categories of patients with significantly different expected survival. Finally, new drugs are currently being tested for MPNs, and molecular discoveries could ultimately lead to the development of a specific targeted therapy. Overall, significant advances in diagnosis, prognostication, and treatment have taken place in the last couple of years in the field of MPNs

    Chronic Myeloproliferative Neoplasms: a Collaborative Approach

    Get PDF
    The classic chronic myeloproliferative neoplasms (MPN) include different entities that pose significant challenges for their optimal diagnosis, treatment and overall management. Polycythemia Vera and Essential Thrombocythemia are the most common among chronic myeloproliferative neoplasms (MPNs); major causes of morbidity and mortality are represented by arterial and venous thrombosis, as well as evolution to myelofibrosis or transformation to acute leukemia. However, survival is only minimally affected. Therapy aims at reducing the rate of thrombosis without increasing the risk of hematologic transformation which could be caused by exposure to cytotoxic drugs. On the other hand, survival is significantly reduced in primary myelofibrosis, and the clinical manifestations may be disabling. In the absence of therapies with the potential of curing the disease, a careful risk-oriented approach is employed for stratifying patients to the most appropriate, currently available, therapeutic options. In this brief review, we will discuss some of the key issues that can arise along the clinical course of MPNs and require an integrated, strictly patient-oriented, approach

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells

    Get PDF
    Myeloproliferative neoplasms (MPN) are chronic myeloid cancers thought to arise at the level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). All can progress to acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that deregulation of microRNAs (miRNAs) might plays an important role in hematologic malignancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs) expression pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology CD34+ cells from healthy subjects and PMF patients. We detected the expression of 784 known miRNAs, with a prevalence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99 new miRNA-offset RNAs (moRNAs), in CD34+ cells. Thirty-seven small RNAs were differentially expressed in PMF patients compared with healthy subjects, according to microRNA sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and miR-543) were deregulated also in PMF granulocytes. Moreover, 3'-moR-128-2 resulted consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in PMF and functional enrichment analyses highlighted many interesting pathways involved in tumor development and progression, such as signaling by FGFR and DAP12 and Oncogene Induced Senescence. As a whole, data obtained in this study deepened the knowledge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to identify and validate a specific small RNA profile that distinguishes PMF granulocytes from those of normal subjects. We thus provided new information regarding the possible role of miRNAs and, specifically, of new moRNAs in this disease
    • …
    corecore