36 research outputs found

    Meissner phases in spin-triplet ferromagnetic superconductors

    Full text link
    We present new results for the properties of phases and phase transitions in spin-triplet ferromagnetic superconductors. The superconductivity of the mixed phase of coexistence of ferromagnetism and unconventional superconductivity is triggered by the presence of spontaneous magnetization. The mixed phase is stable but the other superconducting phases that usually exist in unconventional superconductors are either unstable or for particular values of the parameters of the theory some of them are metastable at relatively low temperatures in a quite narrow domain of the phase diagram. Phase transitions from the normal phase to the phase of coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase can be either of first or second order depending on the concrete substance. Cooper pair and crystal anisotropies determine a more precise outline of the phase diagram shape and reduce the degeneration of ground states of the system but they do not change drastically phase stability domains and thermodynamic properties of the respective phases. The results are discussed in view of application to metallic ferromagnets as UGe2, ZrZn2, URhGe.Comment: 21 pages, 7 figures; Phys. Rev. B (2005) in pres

    Microcanonical entropy for small magnetisations

    Full text link
    Physical quantities obtained from the microcanonical entropy surfaces of classical spin systems show typical features of phase transitions already in finite systems. It is demonstrated that the singular behaviour of the microcanonically defined order parameter and susceptibility can be understood from a Taylor expansion of the entropy surface. The general form of the expansion is determined from the symmetry properties of the microcanonical entropy function with respect to the order parameter. The general findings are investigated for the four-state vector Potts model as an example of a classical spin system.Comment: 15 pages, 7 figure

    Structural Order Parameter in the Pyrochlore Superconductor Cd2Re2O7

    Full text link
    It is shown that both structural phase transitions in Cd2Re2O7, which occur at T_{s1}=200 K and T_{s2}=120 K, are due to an instability of the Re tetrahedral network with respect to the same doubly degenerate long-wavelength phonon mode. The primary structural order parameter transforms according to the irreducible representation E_u of the point group O_h. We argue that the transition at T_{s1} may be of second order, in accordance with experimental data. We obtain the phase diagram in the space of phenomenological parameters and propose a thermodynamic path that Cd2Re2O7 follows upon cooling. Couplings of the itinerant electronic system and localized spin states in pyrochlores and spinels to atomic displacements are discussed.Comment: 5 pages. Submitted to J. Phys. Soc. Jpn. Best quality figures are available at http://www.physics.mun.ca/~isergien/pubs.htm
    corecore