23 research outputs found

    Actin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 23 (2012): 853-863, doi:10.1091/mbc.E11-12-0992.Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott–Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucleation activity of the Arp2/3 complex. In addition to these activities, we find that the WH2 cluster overlaps an atypical, bipartite nuclear localization sequence (NLS) and controls JMY's subcellular localization. Actin monomers bound to the WH2 domains block binding of importins to the NLS and prevent nuclear import of JMY. Mutations that impair actin binding, or cellular perturbations that induce actin filament assembly and decrease the concentration of monomeric actin in the cytoplasm, cause JMY to accumulate in the nucleus. DNA damage induces both cytoplasmic actin polymerization and nuclear import of JMY, and we find that damage-induced nuclear localization of JMY requires both the WH2/NLS region and importin ÎČ. On the basis of our results, we propose that actin assembly regulates nuclear import of JMY in response to DNA damage.This work was supported by grants from the National Institutes of Health, an American Heart Association Predoctoral Fellowship (J.B.Z.), the Robert Day Allen Fellowship Fund (J.B.Z.), and a National Science Foundation Predoctoral Fellowship (B.B.)

    Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements

    Get PDF
    Acknowledgements Sampling of ruminal digesta was carried out at Scotland’s Rural College (SRUC) by Laura Nicoll, Lesley Deans and Claire Broadbent. Sequencing using Illumina MiSeq was carried out by Edinburgh Genomics, The University of Edinburgh. Edinburgh Genomics is partly supported through core grants from NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/J004243/1). Data were processed using the Maxwell High Performance Computing Cluster of the University of Aberdeen IT Service (www.abdn.ac.uk/staffnet/research/hpc.php), provided by Dell Inc. and supported by Alces Software. Funding This work was funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government as a collaborative HEI project between The University of Aberdeen, The Roslin Institute, and Scotland’s Rural College (SRUC). The funding body had no role in the design of the study or collection, analysis, or interpretation of data or in writing the manuscript.Peer reviewedPublisher PD

    Distinct Roles of ÎČ-Galactosidase Paralogues of the Rumen Bacterium Mannheimia succiniciproducens

    No full text
    Mannheimia succiniciproducens, a rumen bacterium belonging to the family Pasteurellaceae, has two putative ÎČ-galactosidase genes, bgaA and bgaB, encoding polypeptides whose deduced amino acid sequences share 56% identity with each other and show approximately 30% identity to the Escherichia coli gene for LacZ. The M. succiniciproducens bgaA (MsbgaA) gene-deletion mutant was not able to grow on lactose as the sole carbon source, suggesting its essential role in lactose metabolism, whereas the MsbgaB gene-deletion mutant did not show any growth defect on a lactose medium. Furthermore, the expression of the MsbgaA gene was induced by the addition of lactose in the growth medium, whereas the MsbgaB gene was constitutively expressed independently of a carbon source. Biochemical characterization of the recombinant proteins revealed that MsBgaA is more efficient than MsBgaB in hydrolyzing o-nitrophenyl-ÎČ-d-galactopyranoside and p-nitrophenyl-ÎČ-d-galactopyranoside. MsBgaA was highly specific for the hydrolysis of lactose, with a catalytic efficiency of 46.9 s−1 mM−1. However, MsBgaB was more efficient for the hydrolysis of lactulose than lactose, and the catalytic efficiency was 10.0 s−1 mM−1. Taken together, our results suggest that the ÎČ-galactosidase paralogues of M. succiniciproducens BgaA and BgaB play a critical role in lactose metabolism and in an unknown but likely specific function for rumen bacteria, respectively
    corecore