80 research outputs found

    Parallax and Luminosity Measurements of an L Subdwarf

    Full text link
    We present the first parallax and luminosity measurements for an L subdwarf, the sdL7 2MASS J05325346+8246465. Observations conducted over three years by the USNO infrared astrometry program yield an astrometric distance of 26.7+/-1.2 pc and a proper motion of 2.6241+/-0.0018"/yr. Combined with broadband spectral and photometric measurements, we determine a luminosity of log(Lbol/Lsun) = -4.24+/-0.06 and Teff = 1730+/-90 K (the latter assuming an age of 5-10 Gyr), comparable to mid-type L field dwarfs. Comparison of the luminosity of 2MASS J05325346+8246465 to theoretical evolutionary models indicates that its mass is just below the sustained hydrogen burning limit, and is therefore a brown dwarf. Its kinematics indicate a ~110 Myr, retrograde Galactic orbit which is both eccentric (3 <~ R <~ 8.5 kpc) and extends well away from the plane (Delta_Z = +/-2 kpc), consistent with membership in the inner halo population. The relatively bright J-band magnitude of 2MASS J05325346+8246465 implies significantly reduced opacity in the 1.2 micron region, consistent with inhibited condensate formation as previously proposed. Its as yet unknown subsolar metallicity remains the primary limitation in constraining its mass; determination of both parameters would provide a powerful test of interior and evolutionary models for low-mass stars and brown dwarfs.Comment: Accepted to ApJ 10 September 2007; 13 pages, 5 figures, 3 tables, formatted in emulateapj styl

    New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud

    Full text link
    We obtain models for a triaxial Milky Way spheroid based on data by Newberg and Yanny. The best fits to the data occur for a spheroid center that is shifted by 3kpc from the Galactic Center. We investigate effects of the triaxiality on the microlensing optical depth to the Large Magellanic Cloud (LMC). The optical depth can be used to ascertain the number of Massive Compact Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along the line of sight between us and the LMC and thus a larger optical depth. However, shifting the spheroid center leads to an effect that goes in the other direction: the best fit to the spheroid center is_away_ from the line of sight to the LMC. As a consequence, these two effects tend to cancel so that the change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%. After subtracting the spheroid contribution in the four models we consider, the MACHO contribution (central value) to the mass of the Galactic Halo varies from \~(8-20)% if all excess lensing events observed by the MACHO collaboration are assumed to be due to MACHOs. Here the maximum is due to the original MACHO collaboration results and the minimum is consistent with 0% at the 1 sigma error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of the local spheroid density and minor revisions to match version published in Journal of Cosmology and Astroparticle Physics (JCAP

    Preliminary Parallaxes of 40 L and T Dwarfs from the U.S. Naval Observatory Infrared Astrometry Program

    Full text link
    We present preliminary trigonometric parallaxes and proper motions for 22 L dwarfs and 18 T dwarfs measured using the ASTROCAM infrared imager. Relative to absolute parallax corrections are made by employing 2MASS and/or SDSS photometry for reference frame stars. We combine USNO infrared and optical parallaxes with the best available CIT system photometry to determine M_J, M_H, and M_K values for 37 L dwarfs between spectral types L0 to L8 and 19 T dwarfs between spectral types T0.5 and T8 and present selected absolute magnitude versus spectral type and color diagrams, based on these results. Luminosities and temperatures are estimated for these objects. Of special interest are the distances of several objects which are at or near the L-T dwarf boundary so that this important transition can be better understood. The previously reported early-mid T dwarf luminosity excess is clearly confirmed and found to be present at J, H, and K. The large number of objects that populate this luminosity excess region indicates that it cannot be due entirely to selection effects. The T dwarf sequence is extended to M_J~16.9 by 2MASS J041519-0935 which, at d = 5.74 pc, is found to be the least luminous [log(L/L_sun)=-5.58] and coldest (T_eff~760 K) brown dwarf known. Combining results from this paper with earlier USNO CCD results we find that, in contrast to the L dwarfs, there are no examples of low velocity (V_tan < 20 km/s) T dwarfs. We briefly discuss future directions for the USNO infrared astrometry program.Comment: 73 pages, 9 figures, 9 tables, accepted for publication in The Astronomical Journa

    The Near-Infared Survey of the N49 Region around the Soft Gamma Repeater SGR 0526-66

    Get PDF
    We report the results of a deep near-infrared survey with the Very Large Telescope/Infrared Spectrometer and Array Camera of the environment of the supernova remnant N49 in the Large Magellanic Cloud, which contains the soft gamma repeater SGR 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR 0526-66 and imaged a young stellar cluster at a projected distance of ∼30 pc from the SGR. This constitutes the third cluster–SGR link and lends support to scenarios in which SGR progenitors originate in young dusty clusters. If confirmed, the cluster-SGR association constrains the age and thus the initial mass of SGR progenitor

    The Optical Afterglow Light Curve of GRB 980519

    Get PDF
    We present V -, R-, and I-band observations made at the US Naval Observatory, Flagstaff Station, of the afterglow of GRB 980519 on UT 1998 May 20 and 22. These observations are combined with extensive data from the literature, and all are placed on a uniform magnitude system. The resultant R- and I-band light curves are fit by simple power laws with no breaks and indices of αR = 2.30 ± 0.12 and αI = 2.05 ± 0.07. This makes the afterglow of GRB 980519 one of the two steepest afterglows yet observed. The combined B-, V -, R-, and I-band observations are used to estimate the spectral power-law index, β = 1.4 ± 0.3, after correction for reddening. Unfortunately, GRB 980519 occurred at a relatively low Galactic latitude (b ≈ +15) where the Galactic reddening is poorly known and, hence, the actual value of β is poorly constrained. The observed α and range of likely β-values are, however, found to be consistent with simple relativistic blast-wave models. This afterglow and that of GRB 980326 displayed much steeper declines than the other seven well-observed afterglows, which cluster near α ≈ 1.2. GRB 980519 and GRB 980326 did not display burst characteristics in common that might distinguish them from the gamma-ray bursts with more typical light curves

    Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    Get PDF
    Trigonometric parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new objects. The median error in the parallax is 0.42 mas, and twelve nebulae have parallax errors less than 20 percent. The parallax for PHL932 is found here to be smaller than was measured by Hipparcos, and this peculiar object is discussed. Comparisons are made with other distance estimates. The distances determined from these parallaxes tend to be intermediate between some short distance estimates and other long estimates; they are somewhat smaller than estimated from spectra of the central stars. Proper motions and tangential velocities are presented. No astrometric perturbations from unresolved close companions are detected.Comment: 24 pages, includes 4 figures. Accepted for A
    corecore