345 research outputs found

    Neutrinos From Individual Gamma-Ray Bursts in the BATSE Catalog

    Get PDF
    We calculate the neutrino emission from individual gamma-ray bursts observed by the BATSE detector on the Compton Gamma-Ray Observatory. Neutrinos are produced by photoproduction of pions when protons interact with photons in the region where the kinetic energy of the relativistic fireball is dissipated allowing the acceleration of electrons and protons. We also consider models where neutrinos are predominantly produced on the radiation surrounding the newly formed black hole. From the observed redshift and photon flux of each individual burst, we compute the neutrino flux in a variety of models based on the assumption that equal kinetic energy is dissipated into electrons and protons. Where not measured, the redshift is estimated by other methods. Unlike previous calculations of the universal diffuse neutrino flux produced by all gamma-ray bursts, the individual fluxes (compiled at http://www.arcetri.astro.it/~dafne/grb/) can be directly compared with coincident observations by the AMANDA telescope at the South Pole. Because of its large statistics, our predictions are likely to be representative for future observations with larger neutrino telescopes.Comment: 49 pages, 7 figures. Accepted for publication in Astroparticle Physic

    Analysis of X-ray flares in GRBs

    Get PDF
    We present a detailed study of the spectral and temporal properties of the X-ray flares emission of several GRBs. We select a sample of GRBs which X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. We try to understand the origin of these fluctuations giving some diagnostic in order to discriminate between refreshed shocks and late internal shocks. For some bursts our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times.Comment: 9 pages, 3 figures. Invited talk at the Swift-Venice 2006 meeting to be published by "Il Nuovo Cimento

    Do long-duration GRBs follow star formation?

    Get PDF
    We compare the luminosity function and rate inferred from the BATSE long bursts peak flux distribution with those inferred from the Swift peak flux distribution. We find that both the BATSE and the Swift peak fluxes can be fitted by the same luminosity function and the two samples are compatible with a population that follows the star formation rate. The estimated local long GRB rate (without beaming corrections) varies by a factor of five from 0.05 Gpc^(-3)yr^(-1) for a rate function that has a large fraction of high redshift bursts to 0.27 Gpc^(-3)yr^(-1) for a rate function that has many local ones. We then turn to compare the BeppoSax/HETE2 and the Swift observed redshift distributions and compare them with the predictions of the luminosity function found. We find that the discrepancy between the BeppoSax/HETE2 and Swift observed redshift distributions is only partially explained by the different thresholds of the detectors and it may indicate strong selection effects. After trying different forms of the star formation rate (SFR) we find that the observed Swift redshift distribution, with more observed high redshift bursts than expected, is inconsistent with a GRB rate that simply follows current models for the SFR. We show that this can be explained by GRB evolution beyond the SFR (more high redshift bursts). Alternatively this can also arise if the luminosity function evolves and earlier bursts were more luminous or if strong selection effects affect the redshift determination.Comment: 15 pages, 8 figures, accepted for publication in JCA

    Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models

    Get PDF
    We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35±\pm15% of the observed EGB in the energy interval E_{\gamma}=0.1-1 GeV, for ~73±\pm15% at E_{\gamma}=1-10 GeV, and for ~60±\pm20% at E_{\gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.Comment: 12 pages, 8 figures, accepted for publication in A&

    Selection effects shaping the Gamma Ray Burst redshift distributions

    Full text link
    Long Gamma Ray Bursts hold the promise of probing star-formation and metal enrichment up to very high redshifts. The present GRB samples with redshift determination are largely incomplete and therefore a careful analysis of selection effects is mandatory before any conclusion can be drawn from the observed GRB redshift distribution. We study and compare three well defined samples of long GRBs detected by Swift, HETE2 and BeppoSAX. We find that Swift GRBs are slighly fainter and harder than BeppoSAX and HETE2 GRBs, as expected due to the higher energy range in which Swift GRBs are detected and localized, compared to BeppoSAX and HETE2. Gas and dust obscuration plays a role in shaping the GRB samples and the present samples of GRBs with redshift. We argue that the majority of the bright Swift GRBs without redshift might actually be z<~2 events therefore the present Swift GRB sample with redshift is biased against low-z GRBs. On the other hand, the detection of bright UV rest-frame afterglows from high-z GRBs, and even from those with large X-ray obscuration, implies a dust amount lower than in nearby GRBs,and/or a different dust composition. If this is the case, the Swift sample of GRBs with redshifts is probably a fair sample of the real high-z GRB population. The absence of high-z GRBs in the BeppoSAX and HETE2 samples of GRBs with redshifts is probably due to the fact at the time of BeppoSAX and HETE2 follow-up faint afterglows of high redshift GRBs will have weaken below the spectroscopic capabilities of even 10m class telescopes. The redshift distribution of a subsample of Swift GRBs with distributions of peak-fluxes, X-ray obscuration and optical magnitude at a fixed observing time similar to those of the BeppoSAX and HETE2 samples, is roughly consistent with BeppoSAX+HETE2 redshift distribution.Comment: 9 pages, back to A&A after referee repor

    Precursor Plerionic Activity and High Energy Gamma-Ray Emission in the Supranova Model of Gamma-Ray Bursts

    Get PDF
    The supranova model of gamma-ray bursts (GRBs), in which the GRB event is preceded by a supernova (SN) explosion by a few months to years, has recently gained support from Fe line detections in X-ray afterglows. A crucial ingredient of this model yet to be studied is the fast-rotating pulsar that should be active during the time interval between the SN and the GRB, driving a powerful wind and a luminous plerionic nebula. We discuss some observational consequences of this precursor plerion, which should provide important tests for the supranova model: 1) the fragmentation of the outlying SN ejecta material by the plerion and its implications for Fe line emission; and 2) the effect of inverse Compton cooling and emission in the GRB external shock due to the plerion radiation field. The plerion-induced inverse Compton emission can dominate in the GeV-TeV energy range during the afterglow, being detectable by GLAST from redshifts z≲1.5z \lesssim 1.5 and distinguishable from self-Compton emission by its spectrum and light curve. The prospects for direct detection and identification of the precursor plerion emission are also briefly considered.Comment: ApJ vol.583, in pres

    On the generation of UHECRs in GRBs: a reappraisal

    Get PDF
    We re-examine critically the arguments raised against the theory that Ultra High Energy Cosmic Rays observed at Earth are produced in Gamma Ray Bursts. These include the limitations to the highest energy attainable by protons around the bursts' shocks, the spectral slope at the highest energies, the total energy released in non--thermal particles, the occurrence of doublets and triplets in the data reported by AGASA. We show that, to within the uncertainties in our current knowledge of GRBs, none of these objections is really fatal to the scenario. In particular, we show that the total energy budget of GRBs easily accounts for the energy injection rate necessary to account for UHECRs as observed at Earth. We also compute the expected particle spectrum at Earth, showing that it fits the HiRes and AGASA data to within statistical uncertainties. We consider the existence of multiplets in AGASA' data. To this end, we present a Langevin--like treatment for the motion of a charged particle in the IGM magnetic field, which allows us to estimate both the average and the rms timedelay for particles of given energy; we discuss when particles of identical energies reach the Earth in bunches, or spread over the rms timedelay, showing that multiplets pose no problem for an explosive model for the sources of UHECRs. We compare our model with a scenario where the particles are accelerated at internal shocks, underlining differences and advantages of particle acceleration at external shocks.Comment: Accepted for publication in the Astrophysical Journal; minor change

    On the detectability of gravitational waves background produced by gamma ray bursts

    Get PDF
    In this paper we discuss a new strategy for the detection of gravitational radiation likely emitted by cosmological gamma ray burst. Robust and conservative estimates lead to the conclusion that the uncorrelated superimposition of bursts of gravitational waves can be detected by interferometric detectors like VIRGO or LIGO. The expected signal is predicted to carry two very distinctive signatures: the cosmological dipole anisotropy and a characteristic time scale in the auto correlation spectrum, which might be exploited, perhaps with ad hoc modifications and/or upgrading of the planned experiments, to confirm the non-instrumental origin of the signal.Comment: 9 pages, 2 figures, LATEX2e, Accepted for pubblications as a Letter to the Editor in Journal of Physics G: Nuclear and Particle Physic
    • …
    corecore