10 research outputs found

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.Ein Mikrofluidiksystem zur Sortierung von NanolitertrÜpfchen basierend auf Massenspektrometrie erreicht eine vollautomatische markierungsfreie Sortierung bei 0.7 Probenâ sâ 1 mit 98â % Genauigkeit. Die Inâ vitroâ Transkription und â Translation (ivTT) eines Transaminaseâ Enzyms in Proben von etwa 25â nL wird demonstriert, und die Proben werden nach ihrer Enzymaktivität sortiert.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/1/ange201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/2/ange201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/3/ange201913203_am.pd

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.A microfluidic system for sorting nanoliter droplets based on mass spectrometry is presented. Fully automated, labelâ free sorting at 0.7â samplesâ sâ 1 is achieved with 98â % accuracy. In vitro transcription and translation (ivTT) of a transaminase enzyme in ca.â 25â nL samples is demonstrated and samples are sorted on the basis of enzyme activity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/1/anie201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/2/anie201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/3/anie201913203_am.pd

    omega-Quinazolinonylalkyl aryl ureas as reversible inhibitors of monoacylglycerol lipase

    No full text
    The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects. To explore a wide range of chemical structures as MAGL binders, we have applied a virtual screening approach by docking small molecules into the crystal structure of human MAGL (hMAGL) and envisaged a library of 45 selected compounds which were then synthesized. Biochemical investigations included the determination of the inhibitory potency on hMAGL and two related hydrolases, i.e. human fatty acid amide hydrolase (hFAAH) and murine cholesterol esterase (mCEase). The most promising candidates from theses analyses, i.e. three w-quinazolinonylalkyl aryl ureas bearing alkyl spacers of three to five methylene groups, exhibited IC50 values of 20-41 mu M and reversible, detergent-insensitive behavior towards hMAGL. Among these compounds, the inhibitor 1-(3,5-bis(tri-fluoromethyl)phenyl)-3-(4-(4-oxo-3,4 dihydroquinazolin-2-yl)butyl)urea (96) was selected for further kinetic characterization, yielding a dissociation constant K-i = 15.4 mu M and a mixed-type inhibition with a pronounced competitive component (alpha = 8.94). This mode of inhibition was further supported by a docking experiment, which suggested that the inhibitor occupies the substrate binding pocket of hMAGL

    Die Tonsillektomie mittels electrothermal bipolar vessel sealing (EBVS)

    No full text

    Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2 ' site binding inhibitor

    No full text
    Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3-thiazolidine-2,4-dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small-molecule inhibitors, in this structure the inhibitor does not bind to the Si and S2 substrate-recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2' site is blocked that normally binds the second side chain at the C-terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N-glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures

    Endocrine Characterization of the Designer Steroid Methyl-1-Testosterone: Investigations on Tissue-Specific Anabolic-Androgenic Potency, Side Effects, and Metabolism

    No full text
    Various products containing rarely characterized anabolic steroids are nowadays marketed as dietary supplements. Herein, the designer steroid methyl-1-testosterone (M1T) (17 beta-hydroxy-17 alpha-methyl-5 alpha-androst-1-en-3-one) was identified, and its biological activity, potential adverse effects, and metabolism were investigated. The affinity of M1T toward the androgen receptor (AR) was tested in vitro using a yeast AR transactivation assay. Its tissue-specific androgenic and anabolic potency and potential adverse effects were studied in a Hershberger assay (sc or oral), and tissue weights and selected molecular markers were investigated. Determination of M1T and its metabolites was performed by gas chromatography mass spectrometry. In the yeast AR transactivation assay, M1T was characterized as potent androgen. In rats, M1T dose-dependently stimulated prostate and levator ani muscle weight after sc administration. Oral administration had no effect but stimulated proliferation in the prostate and modulated IGF-I and AR expression in the gastrocnemius muscle in a dose-dependent manner. Analysis of tyrosine aminotransferase expression provided evidence for a strong activity of M1T in the liver (much higher after oral administration). In rat urine, 17 alpha-methyl-5 alpha-androstane-3 alpha, 17 beta-diol, M1T, and a hydroxylated metabolite were identified. In humans, M1T was confirmed in urine in addition to its main metabolites 17 alpha-methyl-5 alpha-androst-1-ene-3 alpha, 17 beta-diol and 17 alpha-methyl-5 alpha-androstane-3 alpha, 17 beta-diol. Additionally, the corresponding 17-epimers as well as 17 beta-hydroxymethyl-17 alpha-methyl-18-nor-5 alpha-androsta-1,13-dien-3-one and its 17-epimer were detected, and their elimination kinetics was monitored. It was demonstrated that M1T is a potent androgenic and anabolic steroid after oral and sc administration. Obviously, this substance shows no selective AR modulator characteristics and might exhibit liver toxicity, especially after oral administration. (Endocrinology 152: 4718-4728, 2011

    omega -Phthalimidoalkyl Aryl Ureas as Potent and Selective Inhibitors of Cholesterol Esterase

    No full text
    Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure-activity relationship study of a small library of -phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5-bis(trifluoromethyl)phenyl group and the aromatic character of the -phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so-optimized compounds 2 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(3-(1,3-dioxoisoindolin-2-yl)propyl)urea] and 21 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(1,3-dioxoisoindolin-2-yl)butyl)urea] exhibited dissociation constants (K-i) of 1-19m on the two CEases and showed either a competitive (2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolasesmonoacylglycerol lipase and fatty acid amide hydrolasewere inhibited by -phthalimidoalkyl aryl ureas to a lesser extent

    2-Substituted thienotetrahydropyridine derivatives: Allosteric ectonucleotidase inhibitors

    No full text
    The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y(12) receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5MODIFIER LETTER PRIME-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5MODIFIER LETTER PRIME-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y(12) receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73

    Utilizing Biocatalysis and an Unprecedented Sulfolane-mediated Reductive Acetal Opening to Access Nemtabrutinib from Cyrene

    No full text
    The chiral building block 5-amino-2-hydroxymethyltetrahydropyran 1a has been previously synthesized through a cumbersome 9-step synthesis from tri-O-acetyl-D-glucal, which renders access to nemtabrutinib (2), a BTK inhibitor currently being evaluated for the treatment of various hematologic malignancies, inefficient and wasteful. Herein, we describe the development of a protecting group-free, 2-step synthesis of 1a from Cyrene, a biorenewable feedstock. The improved synthesis involves a biocatalytic transamination reaction of Cyrene to install the desired amine-stereocenter in a single step with high diastereoselectivity. The enzymatic reaction is followed by a stereo-retentive reductive acetal opening reaction of the chiral cyrene amine intermediate 3a to furnish 1a. A mechanistic investigation of the acetal opening reaction is also described which uncovered unprecedented reaction conditions for the in-situ generation of diborane mediated by the sulfolane co-solvent. The streamlined synthesis of 1a from Cyrene resulted in a > 27% yield improvement and a significant reduction in the environmental impact of the synthesis

    Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4(cys/-)) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis. Given the unmet medical need to clinically inhibit AKI, we generated a combined small molecule inhibitor (Nec-1f) that simultaneously targets receptor interacting protein kinase 1 (RIPK1) and ferroptosis in cell lines, in freshly isolated primary kidney tubules and in mouse models of cardiac transplantation and of AKI and improved survival in models of ischemia-reperfusion injury. Based on genetic and pharmacological evidence, we conclude that GPX4 dysfunction hypersensitizes mice to ATN during AKI. Additionally, we introduce Nec-1f, a solid inhibitor of RIPK1 and weak inhibitor of ferroptosis. Necroptosis, a form of cell death, occurs in acute renal injury. Here, the authors show that ferroptosis-a form of cell death dependent on iron - also occurs during acute kidney injury, and show that an inhibitor of ferroptosis can improve survival in a mouse model of acute kidney damage
    corecore