77 research outputs found

    Mono and stereoscopic image analysis for detecting the transverse profile of worn-out rails

    Get PDF
    The purpose of this paper is to suggest a new procedure for reconstructing the transverse profile of rails in operation by means of image-processing technique. This methodological approach is based on the “information” contained in high-resolution photographic images of tracks and on specific algorithms which allow to obtain the exact geometric profile of the rails and therefore to measure the state of the rail-head extrados wear. The analyses and the results concern rails taken from railway lines under upgrading by means of mono- and stereoscopic methods which are appropriate to be employed in laboratory applications or in high-efficiency surveys in situ

    Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note

    Get PDF
    While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies

    The Economics of Smart Metering Across the European Countries. A First Assessment

    Get PDF
    Research on sustainability transitions and regional diversification remains one of the main green issues in the Digital Era, with a large variety in terms of topics, geographical applications, related theories and methods. Thus, ad hoc policy measures need in order to enhance the regional abilities in supporting the acceleration of ongoing green transition. This paper provides evidence that, in a specific region, green activities could be positively attracted and correlated with each other only if green culture and capabilities exist, since previous studies showed a U-shaped relationship among entry regions for sustainable technologies and ‘relatedness’ to green knowledge. Moreover, the diversification of sustainable activities depends on the introduction and applications of green environmental technologies. In this perspective, smart meters well represent the potential of digital infrastructure capturing the environmental capacity of a region to apply green technologies for a better future. We investigate the policy effects for smart meter rollout in European countries starting from the idea that this green policy tool helps to satisfy different economic literature strands. A theoretical model is introduced showing that a sustainable and efficient policy instrument will reinforce and develop local green culture. The spatial unit of investigation is the EU-28, and it offers the opportunity to verify the effectiveness of smart meters as a valid tool of analysis for sustainable policies

    Microstructural dynamics of motor learning and sleep-dependent consolidation: A diffusion imaging study

    Get PDF
    Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics. Sixty-one young healthy adults underwent four DWI sessions, two sequential motor trainings, and a night of total sleep deprivation or regular sleep distributed over five days. We observed rapid-motor-learning-related remodeling in occipitoparietal, temporal, and motor-related subcortical regions, reflecting temporary dynamics in learning-related neuronal brain plasticity processes. Sleep-related consolidation seems not to exert a detectable impact on diffusion parameters, at least on the timescale of a few days

    Revised NODDI model for diffusion MRI data with multiple b-tensor encodings

    Get PDF
    This work proposes a revision of the NODDI model to relate brain tissue microstructure to the new generation of diffusion MRI data with multiple b-tensor encodings. NODDI was developed originally for conventional multi-shell diffusion data acquired with linear tensor encoding (LTE). While adequate for LTE data, it has been shown to be incompatible with data using spherical tensor encoding (STE). We embed a different set of assumptions in NODDI, while retaining the tortuosity constraint, to accommodate both LTE and STE data. Experiments with human data with multiple b-tensor encodings confirm the efficacy of the revision

    SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI

    Get PDF
    This work introduces a compartment-based model for apparent soma and neurite density imaging (SANDI) using non-invasive diffusion-weighted MRI (DW-MRI). The existing conjecture in brain microstructure imaging trough DW-MRI presents water diffusion in white (WM) and grey (GM) matter as restricted diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model successfully describe DW-MRI data in WM and GM at b<3 ms/{\mum^2}, it has been also shown to fail in GM at high b values (b>>3 ms/{\mum^2}). Here we hypothesize that the unmodelled soma compartment may be responsible for this failure and propose SANDI as a new model of brain microstructure where soma (i.e. cell body of any brain cell type: from neuroglia to neurons) is explicitly included. We assess the effects of size and density of soma on the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data from mouse (bmax = 40 ms/{/mum^2}) and human (bmax = 10 ms/{\mum^2}) brain. We show that SANDI defines new contrasts representing new complementary information on the brain cyto- and myelo-architecture. Indeed, we show for the first-time maps from 25 healthy human subjects of MR soma and neurite signal fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience

    Apparent Diffusion Coefficient Assessment of Brain Development in Normal Fetuses and Ventriculomegaly

    Get PDF
    Diffusion neuro-MRI has benefited significantly from sophisticated pre-processing procedures aimed at improving image quality and diagnostic. In this work, diffusion-weighted imaging (DWI) was used with artifact correction and the apparent diffusion coefficient (ADC) was quantified to investigate fetal brain development. The DWI protocol was designed in order to limit the acquisition time and to estimate ADC without perfusion bias. The ADC in normal fetal brains was compared to cases with isolated ventriculomegaly (VM), a common fetal disease whose DWI studies are still scarce. DWI was performed in 58 singleton fetuses (Gestational age (GA) range: 19–38w) at 1.5T. In 31 cases, VM was diagnosed on ultrasound. DW-Spin Echo EPI with b-values = 50, 200, 700 s/mm2 along three orthogonal axes was used. All images were corrected for noise, Gibbs-ringing, and motion artifacts. The signal-to-noise ratio (SNR) was calculated and the ADC was measured with a linear least-squared algorithm. A multi-way ANOVA was used to evaluate differences in ADC between normal and VM cases and between second and third trimester in different brain regions. Correlation between ADC and GA was assessed with linear and quadratic regression analysis. Noise and artifact correction considerably increased SNR and the goodness-of-fit. ADC measurements were significantly different between second and third trimester in centrum semiovale, frontal white matter, thalamus, cerebellum and pons of both normal and VM brains (p ≤ 0.03). ADC values were significantly different between normal and VM in centrum semiovale and frontal white matter (p ≤ 0.02). ADC values in centrum semiovale, thalamus, cerebellum and pons linearly decreased with GA both in normal and VM brains, while a quadratic relation with GA was found in basal ganglia and occipital white matter of normal brains and in frontal white matter of VM (p ≤ 0.02). ADC values in all fetal brain regions were lower than those reported in literature where DWI with b = 0 was performed. Conversely, they were in agreement with the results of other authors who measured perfusion and diffusion contributions separately. By optimizing our DWI protocol we achieved an unbiased quantification of brain ADC in reasonable scan time. Our findings suggested that ADC can be a useful biomarker of brain abnormalities associated with VM

    Apparent diffusion coefficient assessment of brain development in normal fetuses and ventriculomegaly

    Get PDF
    Diffusion neuro-MRI has benefited significantly from sophisticated pre-processing procedures aimed at improving image quality and diagnostic. In this work, diffusion-weighted imaging (DWI) was used with artifact correction and the apparent diffusion coefficient (ADC) was quantified to investigate fetal brain development. The DWI protocol was designed in order to limit the acquisition time and to estimate ADC without perfusion bias. The ADC in normal fetal brains was compared to cases with isolated ventriculomegaly (VM), a common fetal disease whose DWI studies are still scarce. DWI was performed in 58 singleton fetuses (Gestational age (GA) range: 19–38w) at 1.5T. In 31 cases, VM was diagnosed on ultrasound. DW-Spin Echo EPI with b-values = 50, 200, 700 s/mm2 along three orthogonal axes was used. All images were corrected for noise, Gibbs-ringing, and motion artifacts. The signal-to-noise ratio (SNR) was calculated and the ADC was measured with a linear least-squared algorithm. A multi-way ANOVA was used to evaluate differences in ADC between normal and VM cases and between second and third trimester in different brain regions. Correlation between ADC and GA was assessed with linear and quadratic regression analysis. Noise and artifact correction considerably increased SNR and the goodness-of-fit. ADC measurements were significantly different between second and third trimester in centrum semiovale, frontal white matter, thalamus, cerebellum and pons of both normal and VM brains (p ≤ 0.03). ADC values were significantly different between normal and VM in centrum semiovale and frontal white matter (p ≤ 0.02). ADC values in centrum semiovale, thalamus, cerebellum and pons linearly decreased with GA both in normal and VM brains, while a quadratic relation with GA was found in basal ganglia and occipital white matter of normal brains and in frontal white matter of VM (p ≤ 0.02). ADC values in all fetal brain regions were lower than those reported in literature where DWI with b = 0 was performed. Conversely, they were in agreement with the results of other authors who measured perfusion and diffusion contributions separately. By optimizing our DWI protocol we achieved an unbiased quantification of brain ADC in reasonable scan time. Our findings suggested that ADC can be a useful biomarker of brain abnormalities associated with VM

    Revised NODDI model for diffusion MRI data with multiple b-tensor encodings

    Get PDF
    This work proposes a revision of the NODDI model to relate brain tissue microstructure to the new generation of diffusion MRI data with multiple b-tensor encodings. NODDI was developed originally for conventional multi-shell diffusion data acquired with linear tensor encoding (LTE). While adequate for LTE data, it has been shown to be incompatible with data using spherical tensor encoding (STE). We embed a different set of assumptions in NODDI, while retaining the tortuosity constraint, to accommodate both LTE and STE data. Experiments with human data with multiple b-tensor encodings confirm the efficacy of the revision
    corecore