2 research outputs found

    Involvement of microbial mats in delayed decay: an experimental essay on fish preservation

    Get PDF
    Microbial mats have been implicated in exceptional fossil preservation. Few analyses have addressed how these complex-multilayered biofilms promote fossil preservation. The sequence of changes during decay of neon tetra fish were tracked up to 27 months, and their decomposition in mats was compared against nonmat sediments (control fish). Statistically significant differences in quantitative variables (length, width, and thickness) are provided (ANOVA test, in all cases, P, 0.001). Changes in the qualitative features (body-head, fins, scale connection, and eye and body coloration) were phenetically analyzed resulting in two clusters and highlighting that notable differences in decay began at day 15. Mat fish how a delayed decomposition maintaining the external and internal body integrity, in which soft organs were preserved after 27 months as shown by Magnetic Resonance Imaging. We discuss how the organization, structure, and activity of this community are interrelated, favoring exceptional preservation. Microbial mats entomb the fish from the earliest stages, forming a Ca-rich coat over the carcass while embedding it in an anoxic condition. This quick entombment provides important protection against abiotic and/or biotic agents

    Quorum sensing network in clinical strains of A. baumannii : AidA is a new quorum quenching enzyme

    Get PDF
    Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2-clon-2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/β hydrolase gene, AidA). This QQ enzyme was present in all nonmotile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421-GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of HO (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/β hydrolase gene, AidA protein) was detected in these strains
    corecore