5 research outputs found

    Reinforcement Learning to Control Lift Coefficient Using Distributed Sensors on a Wind Tunnel Model

    Get PDF
    Arrays of sensors distributed on the wing of fixed-wing vehicles can provide information not directly available to conventional sensor suites. These arrays of sensors have the potential to improve flight control and overall flight performance of small fixed-wing uninhabited aerial vehicles (UAVs). This work investigated the feasibility of estimating and controlling aerodynamic coefficients using the experimental readings of distributed pressure and strain sensors across a wing. The study was performed on a one degree-of-freedom model about pitch of a fixed-wing platform instrumented with the distributed sensing system. A series of reinforcement learning (RL) agents were trained in simulation for lift coefficient control, then validated in wind tunnel experiments. The performance of RL-based controllers with different sets of inputs in the observation space were compared with each other and with that of a manually tuned PID controller. Results showed that hybrid RL agents that used both distributed sensing data and conventional sensors performed best across the different tests.</p

    Unmanned aerial vehicle control costs mirror bird behaviour when soaring close to buildings

    Get PDF
    Small unmanned aerial vehicles (SUAVs) are suitable for many low-altitude operations in urban environments due to their manoeuvrability; however, their flight performance is limited by their on-board energy storage and their ability to cope with high levels of turbulence. Birds exploit the atmospheric boundary layer in urban environments, reducing their energetic flight costs by using orographic lift generated by buildings. This behaviour could be mimicked by fixed-wing SUAVs to overcome their energy limitations if flight control can be maintained in the increased turbulence present in these conditions. Here, the control effort required and energetic benefits for a SUAV flying parallel to buildings whilst using orographic lift was investigated. A flight dynamics and control model was developed for a powered SUAV and used to simulate flight control performance in different turbulent wind conditions. It was found that the control effort required decreased with increasing altitude and that the mean throttle required increased with greater radial distance to the buildings. However, the simulations showed that flying close to the buildings in strong wind speeds increased the risk of collision. Overall, the results suggested that a strategy of flying directly over the front corner of the buildings appears to minimise the control effort required for a given level of orographic lift, a strategy that mirrors the behaviour of gulls in high wind speeds
    corecore